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We provide an overview of our recent joint work on the Reverse Mathematics (RM for short)
of the uncountable ([3–9]).

The well-known Big Five phenomenon of RM (see [2, 10]) is the observation that a large
number of theorems from ordinary mathematics are either provable in the base theory of RM or
equivalent to one of only four systems; these five systems together are called the ‘Big Five’ of RM.
The aim of this paper is to greatly extend the Big Five phenomenon, working in Kohlenbach’s
higher-order RM ([1]).

In particular, we have established numerous equivalences involving the second-order Big
Five systems on one hand, and well-known third-order theorems from analysis about (possibly)
discontinuous functions on the other hand. We study both relatively tame notions, like cadlag
or Baire 1, and potentially wild ones, like quasi-continuity.

We also show that slight generalisations and variations (involving e.g. the notions Baire 2
and cliquishness) of the aforementioned third-order theorems fall far outside of the Big Five.
These observation give rise to four new ‘Big’ third-order systems that boast many equivalences,
namely the uncountability of R ([5, 7, 9]), the Jordan decomposition theorem ([4, 9]), the Baire
category theorem ([3, 8]), and Tao’s pigeon hole principle for measure ([8, 9]).

Finally, we indicate connections to Kleene’s higher-order computability theory when relevant.
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