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Hilbert’s Program aimed to reduce the consistency of mathematics to finitis-
tic means, identified at the time as PR mathematics. As some proposed to admit
broader forms of recurrence [6, 18, 19] Tait argued agains such extensions due to
their impredative aspects [15, 16, 14]. A problem with Tait’s reasoninng is that
already the recurrence schema itself refers to functions over N as completed
totalities. We buttress here Tait’s Thesis on grounds that avoid altogether any
trace of concrete infinities or impredicativity.

In [7] we presented a formal theory of finite structures, and proved that it
is mutually interpretable with Peano Arithmetic. We modify that theory here
by restricting it to finitistically meaningful formulas. We further show that this
theory matches a natural finitistic programming language [8].

Building blocks. Posit a denumerable set A of atoms. A (k-ary) fp-function is a
partial function F : A∗ ⇀ A. An fp-structure over a vocabulary V is a mapping
σ assigning to each f ∈ V an fp-function σ(f), A finite set of fp-structures is
easily representable as an fp-structure.

A-terms, denoting atoms and F-terms, denoting fp-functions, are generated
simultaneously: ω and A-variables are A-terms, ∅∅∅k and k-ary function-variables
are k-ary F-terms; an application of an F-term to A-terms yields an A-term;
and an F-term F can be “extended” to {~t 7→ q}F where ~t, q are A-terms.

The formulas of the language LFP are generated from equations t ≃ q

between A-terms using connectives and quantifiers over A-variables and F-
variables. A formula without F-quantifiers is elementary. The concrete for-
mulas are those with no positive occurrence of ∀-F or negative occurrence of
∃-F; these are the finitistically meaningful formulas.

We construe inductive data, such as elements of a free algebra, as fp-
structures. For example, binary strings are fp-structures over the vocabulary
with a constant e and unary function identifiers 0 and 1.

Axiomatizing finitistic mathematics. The theory ST [7] is mutually inter-
pretable with Peano Arithmetic, whence not finitistic. We refer here to a fini-
tistic sub-theory FST0 of FST whose main principles are Explicit-definition

under Zermelo’s separation, an induction rule for concrete formulas (induction
axiom for concrete formulas is not concrete!). and a finitistic choice principle
for concrete formulas.
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Finitistic programming. The programming language STV for transformation of
fp-structures [8] is finitistic in that the iterative construct is bounded by the size
of the fp-structures present, generalizing the loop programs of [9] for primitive
recursive functions over N.

The three basic structure-revisions considered are extension of an ff with
a defined entry, contraction by an entry, and inception of a new binding of a
constant id to a random fresh atom. The programs are built from revisions
by relational-composition, and branching under a quantifier-free guard, and
iteration under a quantifier-guard and a variant. Here a variant is a finite set
of ffs, and the semantics triggers a loop re-entry only if the variant decreases
(via an excess of depletions over extensions).

Theorem. For each free algebra A, the collection of STV-programs compute all

functions over A defined by PR.

In fact, every ST program that runs in PR time can be mapped into an

extensionally equivalent STV program.

Provable termination, finitistically. Defining function provability is unprob-
lematic for computing over inductive data, but is less obvious when referring
to more general fp-structures.

Given a vocabulary V = {f1 . . . fk}, write ~g V for a vector of function-
variables g1 . . . gk with r(gi) = r(fi). Let C and D be classes of accessible
fp-structures over vocabularies V and W , respectively. We say that a partial-

mapping Φ : C ⇀ D is defined by a formula ψ[~f
V

;~gW ] if for all accessible
fp-structures σ = (~f) over V , ψ[~fV , ~gW ] holds for given accessible V-structure
σ = (~f) and accessible W-structure σ′ = (~g) iff σ′ = Φ(σ).

A mapping Φ : C ⇀ D is provably defined (in FST0) by ψ[~f
V

, ~gW ] if, in
addition to the above, FST0 is concrete, and there are concrete formulas ϕC [

~fV ]
and ϕD[~g

W ] defining C and D respectively, such that the following formulas are
provable in FST0.

ϕC [
~f ] → ∃~g ψ[~f,~g] ∧ ϕD[~g]

and
(ϕC [

~f ] ∧ ψ[~f,~g] ∧ ψ[~f,~h]) → ~g = ~h

Finitistic programs are finitistically provable. If a mapping Φ as above is com-

puted by an STV program then it is provable in FST0.

For the converse implication, we use structural induction on cut-free sequen-
tial proofs for FST0 to prove

Theorem. If a mapping between fp-structures is provable in FST0, then it is

computed by a program in STV.
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