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This paper is strongly related to inquisitive semantics [2, 3], which is a framework for a
formal representation of questions. The main idea of inquisitive semantics can be formulated
in this way: in contrast to statements that convey concrete pieces of information (information
tokens), questions are associated with types of information. For example, for some concrete
objects a, b, one can consider the following pieces of information: a is a circle, b is a triangle,
a is red, b is blue. These information tokens can be viewed as falling respectively under the
following information types: the shape of a, the shape of b, the colour of a, the colour of b.
Of course, there can be various tokens of the same type. For example, a is a circle and a is
a triangle are both tokens of the type the shape of a. In inquisitive semantics, questions like
what is the shape of a are identified with the corresponding types of information (see [1], for
more details). Interestingly, one can observe that types of information can be combined by
logical connectives, just like information tokens. For instance, one can form the type the colour
of a and the shape of a, which includes, for example, the information token a is red and a is
a triangle. This observation indicates that one can construct a language of information types
and determine a logic for this language. Inquisitive logic does not use for this purpose a type
theoretical language but rather employs a standard looking language of predicate logic. In this
paper we will present a novel algebraic approach to the semantics of information types for the
following first-order language L:

φ,ψ ::= Pt1 . . . tn | ⊥ | φ → ψ | φ ∧ ψ | φ ⩾

ψ | ∀xφ | ∃∃xφ | ◦φ

Negation is defined in the usual way: ¬φ =def φ → ⊥. The operators ⩾ and ∃∃ are known as
the inquisitive disjunction and inquistive existential quantifier. They can be viewed as operators
that form information types from information tokens or they can represent question forming
operators as in inquisitve semantics. We included into the language also an operator ◦ that is
interpreted as follows: ◦φ is a proposition that says that some token of the type φ holds. This
allows us to define the ordinary disjunction and existential quantifier: φ ∨ ψ =def ◦(φ ⩾

ψ),
∃xφ =def ◦∃∃xφ.

A novelty of our approach is that we will define the semantics with the help of the notion
of an inquisitive nucleus. A nucleus on a Heyting algebra H = ⟨H,⊓,⊔,⇒, 0⟩ is a function j
satisfying the following conditions: (a) s ⊑ j(s), (b) j(j(s)) ⊑ j(s), (c) j(s ⊓ t) = j(s) ⊓ j(t). A
nucleus is dense if j(0) = 0. A nuclear complete Heyting algebra (ncHA) is a complete Heyting
algebra equipped with a nucleus. If H is an ncHA, the set of all its j-fixed points, i.e. the set
jH = {j(s) | s ∈ H}, will be called the core of H. The elements of the core will be viewed as
information tokens (importantly, they also form a complete Heyting algebra).

An important class of ncHAs related to the Kripke style semantics for inquisitive logic are
the algebras of non-empty downward closed sets in a given complete Heyting algebra H, with
the nucleus j defined as j(X) = {s ∈ H | s ⊑

⊔
X in H}, for any non-empty downward closed

set X in H. We will call these structures Kripkean ncHAs.



By an algebraic frame we will understand a pair F = ⟨H, U⟩, where H is an ncHA and U is
a non-empty set (the domain of quantification). We can introduce in the usual way valuation in
the algebraic frame and evaluation of variables in the domain of quantification and, in the next
step, we can define algebraic semantics for the language L by interpreting its logical symbols
⊥,→,∧, ⩾ ,∀,∃∃, ◦ respectively by the corresponding algebraic operations 0,⇒,⊓,⊔,

d
,
⊔
, j of

ncHAs. Without further restrictions this semantics determines the so-called predicate lax logic
[4]. We obtain inquisitive logic by imposing some additional restrictions. First, we restrict the
valuations so that every elementary formula is semantically interpreted by an information token.
More precisely, such valuation is defined as a function V which assigns to any n-ary predicate
P a function V (P ) : Un → jH. Second, we require that the nucleus j is dense and the following
two conditions are satisfied for every s ∈ H and any collection of indexed elements ti, uik ∈ H,
where i ∈ I and k ∈ K, for some index sets I,K:

(a) j(s) ⇒
⊔
i∈I

ti =
⊔
i∈I

(j(s) ⇒ ti) (b)
l

i∈I

⊔
k∈K

j(uik) =
⊔

f :I→K

l

i∈I

j(uif(i)).

The condition (a) is an algebraic counterpart of a principle of inquisitive logic called split and
the condition (b) is complete distributivity for core elements. An ncHA with a nucleus satisfying
these conditions will be called inquisitive. I will argue that these constrains are exactly what
we need to obtain a desirable interaction between the core elements and their joins in order
to interpret the core elements as information tokens and their joins as information types. In
particular, we obtain that in any algebraic model of this kind any formula φ can be associated
with a set of core elements T (φ) such that the algebraic value of φ in that model is the join of
T (φ) (intuitively, φ represents the type of information tokens from T (φ)). Moreover, T (φ) can
be defined recursively in a way that reflects the usual type theoretic constructions. For example,
T (φ∧ψ) can be defined as the set of core elements that encode pairs of elements from T (φ) and
T (ψ), moreover, T (φ → ψ) can be defined as the set of core elements that encode in a specific
way functions form T (φ) to T (ψ), and so on.

I will also show that these inquisitive algebraic models are strongly related to the Kripkean
models in the sense of the following theorem. Let H1, H2 be ncHAs. A complete homomorphism
from H1 to H2 is a function h : H1 → H2 which preserves all the operations

⊔
,
d
,⇒, j and 0.

We say that H2 is a homomorphic j-image of H1 if h is a complete homomorphism for which it
holds that j2H2 = h(j1H1).

Theorem 1. An ncHA is inquisitive iff it is a homomorphic j-image of a Kripkean ncHA.
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