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Causation and counterfactuals (Hume)

A counterfactual A� C is a conditional describing how things would go if
the world differed from what it actually is (in such a way that it satisfies the
antecedent A).

There is a line of thought connecting causation and counterfactuals (reducing
one to the other?)

Semi-apocryphal origins in Hume (1748), An Enquiry concerning Human
Understanding:

We may define a cause to be an object followed by another,
and where all the objects, similar to the first, are followed by
objects similar to the second. Or, in other words, where,
if the first object had not been, the second never had existed.
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Causation and counterfactuals (Lewis)

Stalnaker (1968) proposed a precise semantics for counterfactuals,
then generalized by Lewis (1973).

One considers possible-worlds models with a notion of similarity
between worlds (u may be closer than v to a reference world w).

M,w |= A� C if all A-worlds closest to w satisfy C.

Lewis (1973b) defines the relation “event c causes event e” as
transitive closure of:

e causally depends on c if and only if, if c were to occur e would occur;
and if c were not to occur e would not occur.
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Causal models (Pearl, Glymour?)

From statistics and computer science, there arose a different approach.

A causal model encodes causal laws as structural equations:

Y := f (X1, . . . ,Xn)

This equation says that, when variables X1, . . .Xn are set to values x1, . . . xn,
then variable Y takes value y .

Not the contrary! This equation does not tell you how X1...Xn may be affected
by modifying Y .

The model is usually enriched with some description (value assignment) of
the actual values taken by variables, or by some probability distribution.
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Causal graphs

The structural equations Y := X ,Z := X + Y induce a graph:

X Z

Y

PAZ = {X ,Y} are the parents (or direct causes) of Z
PAY = {X} is the unique parent of Y .

Y ,Z are endogenous; X is exogenous.

Models with acyclic graphs are called recursive models. I will mostly refer to
these.

If the model is recursive, the values (/probabilities) of the exogenous variables
uniquely determine the values (/probabilities) of all variables in the model.
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Interventionist counterfactuals

In a causal model, we can give precise meaning to interventionist
counterfactuals, i.e. expressions of the form:

If variables X1, . . . ,Xn were fixed to values x1, . . . , xn,
then ψ would hold.

Formally, we write it:

X = x� ψ

or also:

[X = x]ψ
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Interventions and interventionist counterfactuals

Causal setting (M,u):
{

Z := X
Y := X + Z plus an assignment u(X ) = 2.

How do we evaluate Z = 3� Y = 5?

1) We apply the intervention do(Z = 3) to M, obtaining a new model MZ=3.

I.e., we replace the equations with
{

Z := 3
Y := X + Z

2) We evaluate Y by plugging in (in the second equation) the value Z = 3 and
the value u(X ) = 2; we obtain Y = 5 (i.e.: (MZ=3,u) |= Y = 5 ).

3) (MZ=3,u) |= Y = 5, so (M,u) |= Z = 3� Y = 5.
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Interventionist vs. Lewisian counterfactuals

Halpern (2013) devised a way to associate to each recursive model an
equivalent Lewisian model.

-This shows that recursive models can be seen as special cases of
Lewisian models. They satisfy an additional axiom/rule, Reversibility:

(X = x ∧ W = w)� Y = y (X = x ∧ Y = y)�W = w
(X = x� Y = y)

(if Y ̸= W )

-On the other hand, general causal models not always have an
equivalent Lewisian model. The logics are incomparable.
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Axiomatizations

- Galles and Pearl (1998) proposed a few principles (effectiveness,
composition, reversibility...) inspired by the potential outcome approach in
statistics.

- Halpern (2000, 2016) systematized them into complete axiom systems (for
1) the recursive case, 2) the general case, 3) an intermediate “unique
solution” case.

- Briggs (2012) extended the axiomatization to right-nested counterfactuals
and (more controversially) to disjunctive antecedents.

- Zhang &al. (2013, 2023) axiomatized the class(es) of models that behave
similarly to Lewisian models.

- All results above assume finitely many variables and values. Ibeling & Icard
(2020) / Halpern & Peters (2021) extend the axiomatization to the infinitary
case.
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Limitations of causal models: contingent
dependencies?
Works of Henkin (1961), Hintikka and Sandu (1989), Väänänen (2007) have
lead to an interest in studying dependencies in logic.

The (in)dependencies considered in this context usually make sense only
when describing multiplicities of things (contingent, data dependencies).
They can be explained in terms of team semantics (Hodges 1997), an
analogue of Tarskian semantics where formulas are evaluated over sets of
assignments (teams). E.g.:

T |==(X;Y ) iff for all assignments s, s′ ∈ T , s(X) = s′(X) implies
s(Y ) = s′(Y ).

(X functionally determines Y )

Causal models describe only one state of the variables in the system. They
are then inadequate to describe data dependencies. Vice versa, a team
cannot capture causal dependencies.
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Causal teams

Barbero & Sandu (2018-2020) proposed a fusion of the two types of
models.

A causal team of endogenous variables V is a pair T = (T−,F),

where, as before, F encodes some functional causal laws FY for the
endogenous variables;

while T− is a set of variable assignments consistent with the causal
laws.
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Interventions on causal teams

With the causal laws in place, to each model T we can associate another
model TX=x that is obtained by intervening to fix the values of X to x, e.g:

T :
X Y Z
0 1 1
1 2 3
1 2 3

;

X Y Z
0 1 ...
1 1 ...
1 1 ...

; TY=1:
X Y Z
0 1 1
1 1 2
1 1 2

assuming FZ (X ,Y ) = X + Y and FY (X ) = X + 1.
Note that the law for Y is removed after intervening on Y .

We can say that a counterfactual X = x� ψ holds in T if the consequent ψ
holds in the intervened model TX=x.
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Generalized causal teams

There is a natural generalization (which happens to work better
technically): allowing uncertainty also about the causal laws.

Barbero & Yang (2022) introduced generalized causal teams, which
are essentially sets of causal settings, e.g.:

X Y Z
2 2 4 F
2 2 4 G
1 3 4 G

with equations FZ (X ) = 2 ∗ X and GZ (X ,Y ) = X + Y .

More flexibility: we could e.g. use a model to say that
- we are uncertain between two causal explanations
- we only know the causal graph but not the actual laws
- we know the causal laws only in a certain range of values
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Axiomatizations, again
Barbero &Yang (2022) provided a complete system (in “natural deduction
style”, more or less...) for interventionist counterfactuals + functional
dependencies (over generalized causal teams).

The causal team case is recovered using a rule of the form

∀F ∈ Fσ

[ΦF ]
...
ψ

ψ

where ΦF is a formula that explicitly describes a system F of causal laws.

(More efficiently, one can characterize the class of causal teams with 2
unintuitive axioms, B. & Y. 2020.)
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Limitations of causal models: indeterminate interventions

- If I press some button on the remote, the TV turns on.
- I don’t know if I set the 1st or the 3rd gear, but the car started.
- If the pressure or the temperature are increased, the container will break.

Barbero & Yang (2022) suggest that indeterminate interventions (e.g.
do(X = 1 or X = 3)) can be modeled by applying separately the interventions
do(X = 1) and do(X = 3) to the model T and then taking the union
TX=1 ∪ TX=3.

[Notice that TX=x ∪ TY=y should be a generalized causal team – since TX=x
and TY=y will typically have different systems of laws.]
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Indeterminate interventions and disjunctive
antecedents

Indeterminate indeterventions provide an alternative (and better
justified) semantics for counterfactuals with disjunctive antecedents,
e.g.

T |= (X = x ∨ Y = y)� ψ

is taken to mean that ψ holds after the intervention
do(X = x or Y = y), i.e., it holds in the modified model TX=x ∪ TY=y .

Wysocki (2024) shows that, for unnested counterfactuals, this
definition is equivalent to Briggs’.
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Limitations of causal models: conditional interventions

The literature on causal inference often uses complex inteventions of
the form “set Y to value f (X )”.

Such an intervention is easy to perform on a causal team
(assignment-by-assignment). But how can it be represented in a
causal model?
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Limitations of causal models: indeterministic causal laws

The usual causal models encode causal laws as functions. But e.g. in
physics there are many indeterministic causal laws, representable as
relations or multivalued functions:

- If a cannon ball is shot at a certain angle, it will fall within a certain range.
- If a coin is tossed, it will either fall on heads or tails (and not, say, stay in my
pocket).
- Particles that enter a Stern-Gerlach apparatus will go either up or down.

If we intervene on a causal setting with a relational law, we immediately
obtain a (relational) causal team:

I.e., causal teams, not causal settings, are closed under indeterministic laws.
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Recent work on the indeterministic case

In Barbero (2024) I show how to model indeterministic causal laws in a
variant of causal team semantics (this involves some nontrivial decisions).

The notions of parent set, direct cause and non-dummy argument diverge in
this treatment. In general:

PAV ⊇ {direct causes of V} ⊇ {non-dummy arguments of V}.

The paper also provides complete axiomatizations, in the general and the
recursive case, in a Halpern-style language H with counterfactuals

(T−,F) |= [X = x]ψ iff for every s ∈ T−
X=x : ({s},F) |= ψ

Importantly, the notions of direct cause, exogeneity and endogeneity are
definable in this language.
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General axiomatization

Rule MP. ψ ψ→χ
χ

Rule NEC. ⊢ψ
⊢[X=x]ψ

I0. Instances of classical tautologies.
I1◦. [X = x]Y = y → [X = x]Y ̸= y ′ (when y ̸= y ′) [Uniqueness]
I2◦. [X = x]

⊔
y∈Ran(Y ) Y = y [Definiteness]

I3•. ⟨X = x⟩(Z = z & Y = y) → ⟨X = x,Z = z⟩Y = y [Weak composition]
I4◦. [X = x,Y = y ]Y = y [Effectiveness]
I5•. [X = x]ψ & [X = x](ψ → χ) → [X = x]χ [K-axiom]

I6◦. (⟨X = x,V = v⟩(Y = y & Z = z) & ⟨X = x,Y = y⟩(V = v & Z = z)) →
⟨X = x⟩(V = v & Y = y & Z = z)

(for V ̸= Y , and Z = Dom \ (X ∪ {V ,Y})) [Weak reversibility]
I7. Y = y ↔ 2Y = y. [Flatness]
I8. φExo(Y ) → (⟨WY = w⟩Y = y ↔ 3Y = y) [Exogenous variables]

I9. 3⊤ ↔ ⟨W = w⟩⊤. [Nonemptyness]
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Remarks on the new axioms

I7. Y = y ↔ 2Y = y. [Flatness]

Formulas containing only atoms and & have Tarskian truth conditions.

I8. φExo(Y ) → (⟨WY = w⟩Y = y ↔ 3Y = y) [Exogenous variables]

This axiom states that exogenous variables are not affected by interventions
on (all) other variables. NOTE: interventions on less variables could make
assignments disappear.

I9. 3⊤ ↔ ⟨W = w⟩⊤. [Nonemptyness]

Intervening on ALL variables does not make any assignment disappear.
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Direct cause and the recursive case
Indeterministic case: X is a direct cause of Y if, after fixing all other variables
to some values, there is an intervention on X which changes the range of
possible values of Y .

Definable in H:

X ⇝ Y :
⊔

(z,x,y)∈Ran(ZXY )

∼(⟨ZX = zx⟩Y = y ↔ ⟨Z = z⟩Y = y)

where Z = Dom \ {X ,Y}.

We can define a causal team to be recursive if the graph of the direct cause
relation is acyclic.

An axiomatization for recursive causal teams is then obtained by adding one
(canonical) axiom scheme:

R. (X1 ⇝ X2 & · · ·& Xn−1 ⇝ Xn) → ∼Xn ⇝ X1. [Generalized recursivity]
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A difference with the deterministic recursive case:
failure of (strong) composition

Galles&Pearl and Halpern gave a simpler axiomatization for the
recursive case. It included a simpler version of the Composition
principle:

([X = x]W = w & [X = x]Y = y) → [X = x,W = w ]Y = y

But this is arguably NOT VALID in indeterministic models:

A J C
1 heads

do(A=1)
;

A J C
1 heads
1 tails

Here T |= A = 1 & C = heads but T ̸|= [A = 1]C = heads.
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Further axiomatizations (1)

My framework allows the causal laws to be partial, that is, there to be
interventions without an outcome.

We can then say that a causal team is total if the causal laws are total
multivalued functions, i.e., intervening on the parent set of a given variable
always produces at least one outcome.

This class of models is characterized, semantically and axiomatically, by the
axiom:

Axiom Tot. 3⊤ → ⟨WY = w⟩⊤.
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Further axiomatizations (2)

The class of models that are deterministic and have a single
assignment is also axiomatized by:

Sing. 3⊤&
⊔

w∈W W = w.

Det1. ⟨WY = w⟩Y = y → ∼⟨WY = w⟩Y = y ′.

The case of recursive + total + deterministic + unique assignment
models coincides with Halpern’s recursive (deterministic) case.

We then obtain an alternative axiomatization for Halpern’s recursive
models.

F.Barbero ( University of Helsinki ) Causal models June 15, 2024 25 / 38



Further axiomatizations (2)

The class of models that are deterministic and have a single
assignment is also axiomatized by:

Sing. 3⊤&
⊔

w∈W W = w.

Det1. ⟨WY = w⟩Y = y → ∼⟨WY = w⟩Y = y ′.

The case of recursive + total + deterministic + unique assignment
models coincides with Halpern’s recursive (deterministic) case.

We then obtain an alternative axiomatization for Halpern’s recursive
models.

F.Barbero ( University of Helsinki ) Causal models June 15, 2024 25 / 38



Further axiomatizations (2)

The class of models that are deterministic and have a single
assignment is also axiomatized by:

Sing. 3⊤&
⊔

w∈W W = w.

Det1. ⟨WY = w⟩Y = y → ∼⟨WY = w⟩Y = y ′.

The case of recursive + total + deterministic + unique assignment
models coincides with Halpern’s recursive (deterministic) case.

We then obtain an alternative axiomatization for Halpern’s recursive
models.

F.Barbero ( University of Helsinki ) Causal models June 15, 2024 25 / 38



Limitations of causal models: uncertainty and learning
Many concepts used in causal reasoning involve a mixture of causal
and observational notions. How to model these in causal settings?

In a causal team we can define an operator corresponding to
observation/learning (selective implication).

Def: T ; Tψ := {s ∈ T |{s} |= ψ}

T |= ψ ⊃ χ iff Tψ |= χ.

T :

X Y Z
1 2 3
2 1 1
3 2 1
3 2 2

; T X=3:
X Y Z

3 2 1
3 2 2

Then T |= X = 3 ⊃ Y = 2. (“After learning that X = 3, certainly
Y = 2”)
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Decomposing conditional probabilities

The selective implication is particularly useful in probabilistic settings.

If we replace teams with multiteams (multisets of assignments), we
can introduce probabilistic atoms, e.g.:

T |= Pr(α) > ϵ iff |Tα|/|T | > ϵ (or T empty).

Conditional probabilistic statements become definable:

T |= γ ⊃ Pr(α) > ϵ iff PT (α | γ) > ϵ (or T γ empty).
T |= γ ⊃ Pr(α) > Pr(β) iff PT (α | γ) > PT (β | γ) (or T γ empty).

[NOTE: in joint works with G. Sandu and J. Virtema, we have
axiomatizations and semantic classifications of such languages.]
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Probabilistic-causal expressions
Having both conditionals� and ⊃ allows to encompass many special
notions from causal inference, e.g.:

Conditional do expressions: P(Y = y | do(X = x),Z = z) = ϵ

E.g: “The probability that a patient abandons treatment, if (s)he develops
side effects, is ϵ”.

is rendered as

X = x � (Z = z ⊃ P(Y = y) = ϵ)

(“After the intervention do(X = x), the probability P(Y = y | Z = z) is ϵ”).

Pearl’s counterfactuals: P(YX=x = y | Z = z) = ϵ

E.g.:“the probability that my driving time would have been t had I taken
the highway (X = 1), given that I have taken a local road (X = 0), is ϵ”.

In our formalism, we swap� and ⊃:

Z = z ⊃ (X = x � P(Y = y) = ϵ)
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Conditioning before AND after an intervention

In our formalism we can write:

Z = z ⊃ (X = x � (W = w ⊃ P(Y = y) = ϵ))

“After the intervention do(X = x), the probability of Y = y , conditional on Z
being z before the intervention and W being w after the intervention, is ϵ”

Can this be written in the traditional formalism? Probably it would be done as
follows:

P(YX=x = y | WX=x = w ,Z = z) = ϵ

How far can the usual formalism be bent??
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Conditioning between multiple interventions

X = x� (χ ⊃ (W = w� P(Y = y) = ϵ))

“After two interventions, the probability of Y = y in case χ holds after the first
intervention is ϵ”

Can we still write this in a Pearl-style notation? Yes, but complicated.
Using logical equivalences we get:

(X = x� χ) ⊃
[
(X′ = x′ ∧ W = w)� Pr(Y = y) = ϵ

]
.

which can be converted into:

Pr(YX′=x′∧W=w = y | χX=x) = ϵ

Our formalism seems to be more natural.
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Normal form: a different ladder of causation
Our language PCO can describe very complex interactions of intervention
and observation ⊃,�.

Yet, it can be proved that any PCO formula is equivalent to a Boolean
combination of formulas of 3 forms:

1 γ ⊃ Pr(α) ▷ t
(= conditional probability statement P(α | γ) ▷ t)

2 X = x� Pr(α) ▷ t
(= do expression P(α | do(X = x)) ▷ t)

3 γ ⊃ (X = x� Pr(α) ▷ t)
(= Pearl counterfactual P(αX=x | γ) ▷ t).

Pearl’s own “ladder of causation” also includes, at level 2, the conditional do
expressions, say P(α | do(X = x),Z = z) ▷ t , where Z = z is
post-intervention conditioning.
Our normal form shows these are eliminable.
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Another approach: causal epistemic models

With Smets, Schulz, Velazquez-Quesada and Xie, we also proposed a modal
version of the semantics.

- In this case, besides the causal laws and team, we have a designated
(“actual”) world. Formulas are evaluated at that world, by usual modal
semantics. It is an enriched S5 model.

- An intervention not only modifies the team, but picks a new actual world.
(This works well with deterministic, acyclic laws...)

- Now selective implication works as a public announcement operator; and
one can explicitly introduce epistemic operator K .

[Recently, Ding & al. showed how to combine causality with arbitrary
modalities]
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Does something go wrong?

The causal epistemic semantics just sketched satisfies the no learning
principle:

NL: [X = x]Kφ→ K [X = x]φ.

Nothing can be learned from interventions. This contradicts our
everyday experience that, say, if we try to turn on a torch we will learn
whether its battery is empty or not.
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Observables

We then modified the semantics to account for the fact that some
variables are observable.

I.e., the state of the battery is not observable, while the light emitted by
the torch is.

When we evaluate an intervention, we also eliminate all worlds that
disagree with the (new) actual world about the values of the
observables.

This semantics correctly predicts that we will learn something by
turning on the torch.
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Thought experiments vs. real experiments

Our diagnosis:

- The semantics without observables describes thought experiments,
in which the outcomes of interventions can be predicted “from the
armchair”.

- The semantics with observables describes real-life experiments,
which allow us to learn from observing the effects of our actions.
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Thank you!
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