Carnap's Problem, Definability, and Compositionality

Pedro del Valle-Inclan

Scuola Normale Superiore

Outline

- **1** Carnap's Problem (PL)
- 2 Carnap's Problem (FOL)
- 3 Definability
- 4 Compositionality
- 5 A solution

Compositionality 00000 A solution

What is Carnap's Problem?

 Some 'non-normal' interpretations of the connectives and quantifiers are consistent with the classical consequence relation. (Carnap 1943)

Compositionality 00000 A solution

Carnap's Problem (CPL)

Fix a language \mathcal{L} with $\wedge, \neg, .$

- **Interpretation:** valuation v from \mathcal{L} -formulas to $\{1, 0\}$.
- Normal: v respects the usual truth-tables.
- **Consistent with:** Truth preserving. In other words, if $\Gamma \vdash_{\mathcal{L}} A$, then $v(\Gamma) = 1$ implies v(A) = 1.

Here $\vdash_{\mathcal{L}}$ is understood 'syntactically', as a relation between sets of sentences and sentences.

Examples

Valuation v_T such that v_T(A) = 1 for all A. Trivially truth-preserving.

• Valuation v_{cl} such that $v_{cl}(A) = 1$ iff A is a classical tautology.

Compositionalit 00000 A solution 000000000

Bonnay and Westerstähl (2016)

The space of possible interpretations is a priori restricted by universal semantic principles [...]. As speakers, we know that our language is going to have some true and some false sentences, that it will be compositional, and that its logical constituents will be topic-neutral. (Bonnay and Westerståhl 2016)

Compositionalit

A solution

Bonnay and Westerstähl (2016)

The space of possible interpretations is a priori restricted by universal semantic principles [...]. As speakers, we know that our language is going to have some true and some false sentences, that it will be compositional, and that its logical constituents will be topic-neutral. (Bonnay and Westerståhl 2016) Carnap's Problem (FOI

Definability 000000 Compositionality 00000 A solution

Restrictions: non-triviality

Non-triviality: A valuation v is trivial if v(φ) = 1 for all sentences φ.

• Requiring non-triviality just amounts to banning v_T .

Compositionality 00000 A solution

Restrictions: compositionality

Compositionality: Let μ be an assignment of semantic values to the expressions of some language. Then μ is compositional if:

(PC): For every syntactic rule \mathcal{O} there is a function on semantic values $F_{\mathcal{O}}$ such that given a complex expression $\mathcal{O}(e_1, \dots e_n)$, we have $\mu(\mathcal{O}(e_1, \dots e_n)) = F_{\mathcal{O}}(\mu(e_1), \dots \mu(e_n))$.

In propositional logic (PC) just says that v must interpret each connective by a truth-function. Carnap's Problem (FOL 0000000 Definability 000000 Compositionality 00000 A solution

Solution for PL

Theorem 1

For any two-valued valuation v, if v is compositional, non-trivial and consistent with $\vdash_{\mathcal{L}}$, then v is normal for all connectives.

Compositionality

A solution

What is a normal interpretation? (\land, \neg, \forall)

(i)
$$\mathcal{M}, \sigma \models P(x_1, ..., x_n)$$
 iff $(\sigma(x_1), ..., \sigma(x_n)) \in I(P)$.

(ii)
$$\mathcal{M}, \sigma \models \varphi \land \psi$$
 iff $\mathcal{M}, \sigma \models \varphi$ and $\mathcal{M}, \sigma \models \varphi$.

(iii)
$$\mathcal{M}, \sigma \models \neg \varphi$$
 iff $\mathcal{M}, \sigma \not\models \varphi$.

 $(\mathsf{iv})\mathcal{M}, \sigma \models \forall x \varphi \text{ iff for all } a \in D \ \mathcal{M}, \sigma[a/x] \models \varphi.$

A solution

What is a normal interpretation? (\land, \neg, \forall)

(i)
$$\mathcal{M}, \sigma \models P(x_1, ..., x_n)$$
 iff $(\sigma(x_1), ..., \sigma(x_n)) \in I(P)$.

(ii)
$$\mathcal{M}, \sigma \models \varphi \land \psi$$
 iff $\mathcal{M}, \sigma \models \varphi$ and $\mathcal{M}, \sigma \models \varphi$.

(iii)
$$\mathcal{M}, \sigma \models \neg \varphi$$
 iff $\mathcal{M}, \sigma \not\models \varphi$.

(iv) $\mathcal{M}, \sigma \models \forall x \varphi$ iff for all $a \in D \ \mathcal{M}, \sigma[a/x] \models \varphi$.

Compositionality 00000 A solution

Generalised Quantifiers

Quantifiers denote sets of subsets of the domain. For example, \forall denotes {D}. Instead of:

(iv) $\mathcal{M}, \sigma \models \forall x \varphi$ iff for all $a \in D \ \mathcal{M}, \sigma[a/x] \models \varphi$.

We say:

(iv)' $\mathcal{M}, \sigma \models \forall x \varphi \text{ iff } \{a \in D | \mathcal{M}, \sigma[a/x] \models \varphi\} \in \{D\}.$

What is an interpretation? (\land, \neg, \forall)

Since we assume compositionality [...] and non-triviality, we need not worry about the interpretation of connectives, which has to be standard by [Theorem 1].

What is an interpretation? (\land, \neg, \forall)

- Since we assume compositionality [...] and non-triviality, we need not worry about the interpretation of connectives, which has to be standard by [Theorem 1].
- Hence, our interpretations can be taken to be pairs of the form (M, Q) where M is a standard L-structure [...], and Q is a set of subsets of the domain, interpreting ∀.

(Bonnay and Westerståhl 2016, p. 729.)

Compositionality

What is an interpretation? (\land, \neg, \forall)

An interpretation for \mathcal{L} is **weak model** \mathcal{M}, Q where $\mathcal{M} = (D, I)$ is an \mathcal{L} -structure and $Q \subseteq \mathcal{P}(D)$ interprets \forall .

$$\mathcal{M}, Q, \sigma \models P(x_1, ..., x_n) \text{ iff } (\sigma(x_1), ..., \sigma(x_n)) \in I(P).$$
$$\mathcal{M}, Q, \sigma \models \varphi \land \psi \text{ iff } \mathcal{M}, Q, \sigma \models \varphi \text{ and } \mathcal{M}, Q, \sigma \models \varphi.$$
$$\mathcal{M}, Q, \sigma \models \neg \varphi \text{ iff } \mathcal{M}, Q, \sigma \not\models \varphi.$$

 $\mathcal{M}, \mathcal{Q}, \sigma \models \forall x \varphi \text{ iff } \{ a \in D | \mathcal{M}, \mathcal{Q}, \sigma[a/x] \models \varphi \} \in \mathbf{Q}.$

Carnap's Problem (FOL)

Definability 000000 Compositionality 00000 A solution

Normal, consistent with $\vdash_{\mathcal{L}}$

- \mathcal{M}, Q is normal if $Q = \{D\}$.
- \mathcal{M}, Q is consistent with $\vdash_{\mathcal{L}}$ if it is truth preserving:

If $\Gamma \vdash_{\mathcal{L}} \varphi$ and $\mathcal{M}, \mathcal{Q} \models \Gamma$, then $\mathcal{M}, \mathcal{Q} \models \varphi$

Compositionality 00000 A solution

Bonnay and Westerstähl (2016)

The space of possible interpretations is a priori restricted by universal semantic principles [...]. As speakers, we know that our language is going to have some true and some false sentences, that it will be compositional, and that its logical constituents will be topic-neutral. (Bonnay and Westerstähl 2016)

Compositionality 00000 A solution

Invariance under permutation

- A permutation π of the domain D of a structure M is a bijection of D onto itself.
- Permutations are lifted point-wise to sets: if π is a permutation of D and $X \subseteq D$, let $\pi(X) = \{\pi(a) \in D \mid a \in X\}.$
- $Q \subseteq \mathcal{P}(D)$ is invariant under permutations if $Q = \{\pi(X) \mid X \in Q\}$ for any permutation π .
- Examples: $\{D\}$, E_D , E_n for any n...

Summary

- Interpretation is a weak model \mathcal{M}, Q , where \mathcal{M} is an \mathcal{L} -structure, $Q \subseteq \mathcal{P}(D)$ interprets \forall .
- Normal interpretation of connectives is fixed. Non-normality can only come from Q.
- Invariance under permutations is supposed to get rid of it.

Compositionality 00000 A solution

Bonnay and Westerståhl's strategy

(BW1) Let L be a language, M, Q a weak model for it. Then M, Q is consistent with ⊢_L iff Q is a principal filter of the domain.

 (BW2) The only principal filter on D that's invariant under permutations is Q = {D}.

Compositionality 00000 A solution

Bonnay and Westerståhl's strategy

(BW1) Let L be a language, M, Q a weak model for it. Then M, Q is consistent with ⊢_L iff Q is a principal filter of the domain.

 (BW2) The only principal filter on D that's invariant under permutations is Q = {D}.

Compositionality 00000 A solution

Why does (BW1) fail?

$\mathcal{M}, \{D\}, \sigma \models \forall x \varphi \text{ iff } \{a \in D \mid \mathcal{M}, \{D\}, \sigma[a/x] \models \varphi\} \in \{D\}.$

Strictly speaking we don't need the denotation of \forall to contain *only* D. We can clutter it with extra subsets that the language cannot describe.

Roughly, we clutter it with subsets that are not blue for any φ and $\sigma.$

Compositionality 00000 A solution

Why does (BW1) fail?

Given a weak model \mathcal{M}, Q :

- The extension of a formula φ relative to σ and x is: $\|\varphi\|_{\sigma,x}^{\mathcal{M},\mathcal{Q}} := \{a \in D \mid (\mathcal{M}, \mathcal{Q}), \sigma[a/x] \models \varphi\}.$
- $X \subseteq D$ is **definable** if it's the extension of some formula.
- The definable subsets of \mathcal{M}, Q are denoted $Def(\mathcal{M}, Q)$.

Carnap's Problem (FOL)

Definability

Compositionality 20000 A solution

Why does (BW1) fail?

Lemma 2

Let \mathcal{M}, Q and \mathcal{M}, Q' be weak models such that $Q' = Q \cup B$ for some $B \subseteq \mathcal{P}(D)$ such that $B \cap Def(\mathcal{M}, Q) = \emptyset$. Then $\mathcal{M}, Q, \sigma \models \varphi$ iff $\mathcal{M}, Q', \sigma \models \varphi$ for any φ and σ . arnap's Problem (FOL

Definability

Compositionality 00000 A solution

How does (BW1) fail?

Corollary 3

There is a first-order language \mathcal{L}_1 with a non-normal weak model \mathcal{N}, Q consistent with the classical consequence relation $\vdash_{\mathcal{L}_1}$.

Compositionality 00000 A solution

How does (BW1) fail?

Corollary 3

There is a first-order language \mathcal{L}_1 with a non-normal weak model \mathcal{N}, Q consistent with the classical consequence relation $\vdash_{\mathcal{L}_1}$.

Proof.

Let \mathcal{L}_1 have a single unary predicate symbol P, set $|D| \ge 1$, I(P) = D. The only definable subsets are D, \emptyset , so the normal model $\mathcal{N}, \{D\}$ and the non-normal model \mathcal{N}, E_D are as described in Lemma 2. Note that E_D is invariant under permutations.

Summary (definability)

 (BW1) fails because we can exploit the undefinability of subsets of the domain.

There are non-normal interpretations even if we assume that the interpretation of all connectives is normal.

• We're assuming the normal interpretation of connectives is fixed by **compositionality and non-triviality**.

 The Tarskian clauses don't assign semantic values to formulas. They define a ternary relation between structures, assignments and formulas. Carnap's Problem (FOI 00000000 Definability

Compositionality

A solution

Compositionality

Let \mathcal{M} be a normal model. Instead of $\mathcal{M}, \sigma \models \varphi$ we write $v_{\sigma}(\varphi) = 1$.

$$\mathsf{v}_\sigma(arphi\wedge\psi)=1 ext{ iff } \mathsf{v}_\sigma(arphi)=1 ext{ and } \mathsf{v}_\sigma(\psi)=1.$$

 $v_{\sigma}(\neg \varphi) = 1$ iff $v_{\sigma}(\varphi) = 0$

 $v_{\sigma}(\forall x \varphi) = 1$ iff for all σ' st. $\sigma' \sim_x \sigma$, we have $v_{\sigma'}(\varphi) = 1$

Carnap's Problem (FOI

Definability 000000 Compositionality

A solution

Compositionality

Since we assume compositionality [...] and non-triviality, we need not worry about the interpretation of connectives, which has to be standard by [Theorem 1]. (p. 729)

Problem

• The NORMAL valuations v_{σ} are not compositional.

• The value of $v_{\sigma}(\forall x \varphi)$ is not a function of the value of $v_{\sigma}(\varphi)$.

 $v_{\sigma}(\forall x \varphi) = 1$ iff for all σ' st. $\sigma' \sim_{\mathsf{x}} \sigma$ we have $v_{\sigma'}(\varphi) = 1$

Compositionality

A solution

Summary (compositionality)

 If the only semantic values are 0 and 1, then compositionality rules out normal interpretations. If there are more semantic values, Theorem 1 does not apply. Carnap's Problem (PL)

Carnap's Problem (FOL 0000000 Definability 000000 Compositionality

A solution

General idea

 Using second-order variables won't do. But if we look at the way we prove things, something similar to it can be justified.

- Using second-order variables won't do. But if we look at the way we prove things, something similar to it can be justified.
- So far, an interpretation is consistent with the classical consequence relation if it makes valid arguments truth-preserving.

- Using second-order variables won't do. But if we look at the way we prove things, something similar to it can be justified.
- So far, an interpretation is consistent with the classical consequence relation if it makes valid arguments truth-preserving.
- This is too weak!

• $P(c) \land Q(c) \vdash Q(c)$ is valid. We draw inferences like this without knowing the extension of P, Q or the reference of c.

- $P(c) \land Q(c) \vdash Q(c)$ is valid. We draw inferences like this without knowing the extension of P, Q or the reference of c.
- ∀xP(x) ⊢ P(c) is valid. We draw inferences like this without knowing the extension of P or the reference of c.

- $P(c) \land Q(c) \vdash Q(c)$ is valid. We draw inferences like this without knowing the extension of P, Q or the reference of c.
- $\forall xP(x) \vdash P(c)$ is valid. We draw inferences like this without knowing the extension of *P* or the reference of *c*.
- We take valid inferences to be truth-preserving regardless of the interpretation of non logical vocabulary.

Compositionality

A solution

General idea

'Consistency with respect to \vdash ' should be truth-preservation regardless of the interpretation of non-logical vocabulary.

Compositionality 00000 A solution

What is an interpretation?

- We're going to re-interpret non-logical vocabulary, so instead of starting with an \mathcal{L} -structure $\mathcal{M} = (D, I)$, we start with a domain D.
- An interpretation is a triple *T* = (*F*_∧, *F*_¬, *Q*) where the *F*_◊ are truth-functions, *Q* ⊆ *P*(*D*) is the extension of ∀.
- Given a function / interpreting non-logical vocabulary, the truth-value of sentences is given in the obvious way:

Carnap's Problem (FOI

Definability 000000 Compositionality

A solution

What is an interpretation?

$$\begin{aligned} \mathcal{T}_{\sigma}(Px_{1},...x_{n}) &= 1 \text{ iff } (\sigma(x_{1}),...,\sigma(x_{n})) \in I(P). \\ \mathcal{T}_{\sigma}(\varphi \wedge \psi) &= F_{\wedge}[\mathcal{T}_{\sigma}(\varphi),\mathcal{T}_{\sigma}(\psi)]. \\ \mathcal{T}_{\sigma}(\neg \varphi) &= F_{\neg}[\mathcal{T}_{\sigma}(\varphi)]. \\ \mathcal{T}_{\sigma}(\forall x \varphi) &= 1 \text{ iff } \{a \in D | \mathcal{T}_{\sigma[a/x]}(\varphi) = 1\} \in Q. \end{aligned}$$

Compositionality 00000 A solution

Consistent⁺ with $\vdash_{\mathcal{L}}$

An interpretation $\mathcal{T} = (F_{\wedge}, F_{\neg}, Q)$ is consistent⁺ with $\vdash_{\mathcal{L}}$ if it is **truth-preserving for any** *I* interpreting non-logical vocabulary:

$$\Gamma \vdash_{\mathcal{L}} \varphi$$
 and $\mathcal{T}_{\sigma}(\Gamma) = 1$ imply $\mathcal{T}_{\sigma}(\varphi) = 1$.

Carnap's Problem (FOL

Definability 000000 Compositionality

A solution

Solution

Theorem 4

Let $\mathcal{T} = (F_{\wedge}, F_{\neg}, Q)$ be an interpretation for \mathcal{L} . If \mathcal{T} is consistent⁺ with $\vdash_{\mathcal{L}}$, then it is normal.

Solution

Theorem 4

Let $\mathcal{T} = (F_{\wedge}, F_{\neg}, Q)$ be an interpretation for \mathcal{L} . If \mathcal{T} is consistent⁺ with $\vdash_{\mathcal{L}}$, then it is normal.

Proof.

Negation: Suppose e.g. that $F_{\neg}(0) = 0$. Set $I(P) = \emptyset$ and let σ be arbitrary. Since $I(P) = \emptyset$ we must have $v_{\sigma}^{\mathcal{T}}[Px] = 0$. Then $v_{\sigma}^{\mathcal{T}}[(Px \land \neg Px)] = 0$, since one conjunct is false. But $F_{\neg}(0) = 0$, so $v_{\sigma}^{\mathcal{T}}[\neg(Px \land \neg Px)] = 0$. Thus, \mathcal{T} invalidates the classical tautology $\vdash \neg(Px \land \neg Px)$. Remaining cases are similar.

- Bonnay and Westerståhl assume compositionality, non-triviality, invariance under permutations, and predicate variables.
- We take their notion of interpretation and use consistency⁺ instead of predicate variables.

Comparing solutions

Appeals to open-endedness assume that inference rules remain valid under any extension of the language. This proposal only assumes that inferences remain valid under (well-behaved!) reinterpretations of the vocabulary we already have.

• We can read classical semantics both from the classical consequence relation and from **standard rules** for CL.

Thanks!

What if we change the semantics?

Two-valued semantics is not compositional. But what if we apply Bonnay and Westerståhl's strategy to a different semantics that is?

Normal Compositional Semantics

The semantic value [[φ]]^M of φ in M is the set of assignments σ such that M, σ ⊨ φ.

Connectives and quantifiers are operations on semantic values.

Normal Compositional Semantics

$$\begin{split} \llbracket P(x_1, \dots x_n) \rrbracket^{\mathcal{M}} &= \{ \sigma \in A^{\mathcal{M}} \mid (\sigma(x_1), \dots, \sigma(x_n)) \in I(P) \} \\ \llbracket \varphi \wedge \psi \rrbracket^{\mathcal{M}} &= \llbracket \varphi \rrbracket^{\mathcal{M}} \cap \llbracket \psi \rrbracket^{\mathcal{M}} \\ \llbracket \neg \varphi \rrbracket^{\mathcal{M}} &= A^{\mathcal{M}} - \llbracket \varphi \rrbracket^{\mathcal{M}} \\ \llbracket \forall x \varphi \rrbracket^{\mathcal{M}} &= \{ \sigma \in A^{\mathcal{M}} \mid \sigma' \in \llbracket \varphi \rrbracket^{\mathcal{M}} \text{ for all } \sigma' \text{ st. } \sigma \sim_x \sigma' \} \end{split}$$

Normal Compositional Semantics

$$\begin{split} \llbracket P(x_1, \dots, x_n) \rrbracket^{\mathcal{M}} &= \{ \sigma \in A^{\mathcal{M}} \mid (\sigma(x_1), \dots, \sigma(x_n)) \in I(P) \} \\ \llbracket \varphi \wedge \psi \rrbracket^{\mathcal{M}} &= \llbracket \varphi \rrbracket^{\mathcal{M}} \cap \llbracket \psi \rrbracket^{\mathcal{M}} \\ \llbracket \neg \varphi \rrbracket^{\mathcal{M}} &= A^{\mathcal{M}} - \llbracket \varphi \rrbracket^{\mathcal{M}} \\ \llbracket \forall x \varphi \rrbracket^{\mathcal{M}} &= \{ \sigma \in A^{\mathcal{M}} \mid \sigma' \in \llbracket \varphi \rrbracket^{\mathcal{M}} \text{ for all } \sigma' \text{ st. } \sigma \sim_x \sigma' \} \end{split}$$

What is an interpretation?

Given $\mathcal{M} = (D, I)$:

- **Interpretation:** function from formulas to $\mathcal{P}(\mathcal{A}^{\mathcal{M}})$.
- Compositional: T = (f₀, F_∧, F_¬, F_∀), where the F_◊ are operations on P(A^M).
- **Normal:** the F_{\diamond} are the intended operations.
- **Consistent:** whenever $\Gamma \vdash_{\mathcal{L}} \varphi$, we have that $\bigcap_{\gamma \in \Gamma} \llbracket \gamma \rrbracket^{\mathcal{T}} \subseteq \llbracket \varphi \rrbracket^{\mathcal{T}}.$

Permutation invariance (McGee 1996)

Let π is a permutation of D, X a set of variable assignments.

- π is lifted to sets of assignments pointwise: $\pi^*(X) = \{\pi \circ \sigma \in A^{\mathcal{M}} | \sigma \in X\}$
- An n-ary operation *F*_◊ on *A^M* is invariant under permutations if π*(*F*_◊(*X*₁, ..., *X_n*)) = *F*_◊(π*(*X*₁), ..., π*(*X_n*)) for all permutations π.

Problem

- More semantic values means more (non-normal) interpretations.
- There are non-normal valuations even if every subset of the domain is definable.
- Why? Given a sufficiently large domain, some sets of assignments can *never* be the value of *any* formula on *any* normal interpretation.

More semantic values than formulas

- In a normal structure, $\mathcal{M}, \sigma \models \varphi$ depends on the value σ assigns to the (finitely many) free variables \vec{x} of φ .
- If σ ∈ [[φ]]^M, there are finitely many variables x st. if σ' differs from σ only in x, then σ' ∉ [[φ]]^M
- $Y \subseteq A^{\mathcal{M}}$ is **dependent** if, for some **finite** \vec{x} , there are σ and a σ' that differ at most in the values of \vec{x} but such that $\sigma \in Y$ and $\sigma' \notin Y$. Otherwise Y is **independent**.

Observation 5

The value of $\llbracket \varphi \rrbracket^{\mathcal{M}}$ in a normal interpretation based on \mathcal{M} is always $A^{\mathcal{M}}, \emptyset$, or a **dependent** set of assignments, for arbitrary φ and \mathcal{M} .

Observation 5

The value of $\llbracket \varphi \rrbracket^{\mathcal{M}}$ in a normal interpretation based on \mathcal{M} is always $A^{\mathcal{M}}, \emptyset$, or a **dependent** set of assignments, for arbitrary φ and \mathcal{M} .

Observation 6

Given a structure \mathcal{M} for \mathcal{L} , some **independent** sets of assignments are **invariant** under permutations.

Observation 5

The value of $\llbracket \varphi \rrbracket^{\mathcal{M}}$ in a normal interpretation based on \mathcal{M} is always $A^{\mathcal{M}}, \emptyset$, or a **dependent** set of assignments, for arbitrary φ and \mathcal{M} .

Observation 6

Given a structure \mathcal{M} for \mathcal{L} , some **independent** sets of assignments are **invariant** under permutations.

Example: the set C_{∞} of assignments that give the same value to infinitely many variables.

Lemma 7

Let \mathcal{L} be any first-order language. Then there is a compositional, non-trivial, non-normal interpretation \mathcal{T} that is consistent with $\vdash_{\mathcal{L}}$.

Sketch: Let $|D| \ge \omega$. Define an interpretation that behaves normally for all sets of assignments *except* for C_{∞} , where they are identity. The resulting operations are invariant, because C_{∞} is invariant. Also, the non-normality is not 'felt', because C_{∞} is never the semantic value of a formula, so the interpretation is consistent.

Summary (compositionality)

 (FO) compositional interpretations require a lot of semantic values, and more semantic values means more problems.

 Compositionality does not solve Carnap's Problem, it only makes it worse.