Multilateral Supervaluationism and Classicality SLSS 2024, Reykjavik

Bas Kortenbach, SNS, Pisa

Joined work with: - Luca Incurvati, ILLC, UvA - Julian Schlöder, UConn

Supervaluationism is a theory about vagueness

イロト イヨト イヨト イヨト

3

Introduction

Supervaluationism is a theory about vagueness

Question: Does SV logic depart from classical logic, and if so, is this problematic?

Supervaluationism is a theory about vagueness

Question: Does SV logic depart from classical logic, and if so, is this problematic?

Partially depends on how we formalize the theory

Supervaluationism is a theory about vagueness

Question: Does SV logic depart from classical logic, and if so, is this problematic?

Partially depends on how we formalize the theory

Incurvati & Schlöder (2022b) propose to define SV logic multilaterally

Argue that it has benefits, e.g. regarding classicality

Supervaluationism is a theory about vagueness

Question: Does SV logic depart from classical logic, and if so, is this problematic?

Partially depends on how we formalize the theory

Incurvati & Schlöder (2022b) propose to define SV logic multilaterally

Argue that it has benefits, e.g. regarding classicality

However: not clear how the MSV logics relate to classical logic

Multilateral syntax makes this complicated

Supervaluationism is a theory about vagueness

Question: Does SV logic depart from classical logic, and if so, is this problematic?

Partially depends on how we formalize the theory

Incurvati & Schlöder (2022b) propose to define SV logic multilaterally

Argue that it has benefits, e.g. regarding classicality

However: not clear how the MSV logics relate to classical logic

Multilateral syntax makes this complicated

Goal: Patch this hole

・ロト ・四ト ・ヨト ・ヨト

3

(Multilateral) Supervaluationism

• **Supervaluationism:** natural language has vagueness ('tall', 'rich') because of *semantic indecision* of vague terms

- Supervaluationism: natural language has vagueness ('tall', 'rich') because of *semantic indecision* of vague terms
 - Its semantics is compatible with many different ways of making it precise ('precisifications')

- **Supervaluationism:** natural language has vagueness ('tall', 'rich') because of *semantic indecision* of vague terms
 - Its semantics is compatible with many different ways of making it precise ('precisifications')
- A sentence is only definitely true if it is true on all precisifications (*supertrue*)
 - Definitely false if false on all precisifications (superfalse)
 - Borderline if true on some but false on others

- **Supervaluationism:** natural language has vagueness ('tall', 'rich') because of *semantic indecision* of vague terms
 - Its semantics is compatible with many different ways of making it precise ('precisifications')
- A sentence is only definitely true if it is true on all precisifications (*supertrue*)
 - Definitely false if false on all precisifications (superfalse)
 - Borderline if true on some but false on others

Truth = supertruth

Supervaluationist Logic

In "standard" formalization:

SV validates every classical inference (schema)

Supervaluationist Logic

In "standard" formalization:

- SV validates every classical inference (schema)
- But not every metainference/metaschema: contraposition, conditional proof, *reductio*, proof by cases, and existential elimination

Supervaluationist Logic

In "standard" formalization:

- SV validates every classical inference (schema)
- But not every metainference/metaschema: contraposition, conditional proof, *reductio*, proof by cases, and existential elimination

Graff Fara (2003) and Williamson (2018):

- Such metainferences are central to inferential practice
- SV cannot give an account of good deductive reasoning
 - Esp. without restricted versions/recapture
- SV lacks satisfying proof theory

イロト イポト イヨト イヨト

Multilateral Logics

Multilateralism (Incurvati & Schlöder, 2019; 2022a) treats speech acts *weak assertion* and *weak rejection* alongside strong assertion

Multilateral Logics

Multilateralism (Incurvati & Schlöder, 2019; 2022a) treats speech acts *weak assertion* and *weak rejection* alongside strong assertion

For every \mathcal{L} sentence A, we have three signed formulae in \mathcal{L}_S

- +A (strong assertion of A)
- ⊕A (weak assertion)
- $\blacksquare \ominus A \text{ (weak rejection)}$

Multilateral logics are ND systems between signed formulae

イロト イポト イヨト イヨト

Multilateral Supervaluationism

The idea behind MSV:

- Definite truths warrant strong assertion
- Definite falsehoods strong rejection (+¬A)
- Borderline cases warrant neither, hence should be weakly asserted and weakly rejected

Multilateral Supervaluationism

The idea behind MSV:

- Definite truths warrant strong assertion
- Definite falsehoods strong rejection (+¬A)
- Borderline cases warrant neither, hence should be weakly asserted and weakly rejected

Within this approach, (I&S, 2022b) defined three logics:

- 1. SML, the basic propositional modal (ΔA = 'definitely A')
- 2. SML⁻, slightly weaker to allow for *higher-order vagueness*
- 3. QSML⁻, extension to FOL₌

SML Operational Rules

<ロト < 回 ト < 臣 ト < 臣 ト 三 の < C</p>

SML Operational Rules

$$(\ominus \neg \mathsf{L}.) \xrightarrow{\oplus A} (\ominus \neg \mathsf{E}.) \xrightarrow{\ominus \neg A} (\oplus \neg \mathsf{L}.) \xrightarrow{\oplus \neg A} (\oplus \neg \mathsf{L}.) \xrightarrow{\oplus \neg A} (\oplus \neg \mathsf{E}.) \xrightarrow{\oplus \neg A}$$

<ロト < 回 ト < 三 ト < 三 ト の < ○</p>

SML Operational Rules

$$(\ominus \neg \mathsf{I}.) \xrightarrow{\oplus A} (\ominus \neg \mathsf{E}.) \xrightarrow{\ominus \neg A} (\oplus \neg \mathsf{E}.) \xrightarrow{\oplus \neg A} (\oplus \neg \mathsf{I}.) \xrightarrow{\oplus A} (\oplus \neg \mathsf{E}.) \xrightarrow{\oplus \neg A} \ominus A$$

$$(+\Delta I.) \frac{+A}{+\Delta A} \qquad (+\Delta E.) \frac{+\Delta A}{+A}$$

 $\frac{\oplus \Delta A}{+A}$

イロト イロト イヨト イヨト

Ξ.

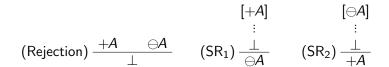
$$(\oplus \Delta I.) \frac{+A}{\oplus \Delta A} \quad (\oplus \Delta E.)$$

Bas Kortenbach, SNS, Pisa

イロト イヨト イヨト イヨト

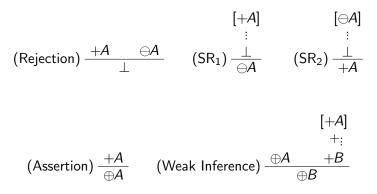
3

Coordination Principles



< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Coordination Principles



Where +: means all undischarged assumptions are signed with +, and $(+\Delta I.)$ and $(\oplus \Delta I.)$ were not used

QSML^-

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Bas Kortenbach, SNS, Pisa

Restricted Rules in MSV

The MSV systems derive:

$$[+A] \qquad [+A] \qquad [+B]$$

$$+\vdots \qquad +\vdots \qquad +\vdots$$

$$(+ \rightarrow I.) \xrightarrow{+B} \qquad (+ \lor E.) \xrightarrow{+A \lor B} \qquad +C \qquad +C$$

$$\begin{array}{c} [+\neg A] & [+A[a/x]] \\ +\vdots & +\vdots \\ (+\neg E.) \frac{\bot}{+A} & (+\exists E.) \frac{+\exists x A + B}{+B} \\ \end{array} if a is any constant symbol not occurring in A, B or undischarged assumptions$$

Bas Kortenbach, SNS, Pisa

э

Restricted Rules in MSV

The MSV systems derive:

$$[+A] \qquad [+A] \qquad [+B]$$

$$+: \qquad +: \qquad +:$$

$$(+ \rightarrow I.) \xrightarrow{+B} \qquad (+ \lor E.) \xrightarrow{+A \lor B} \qquad +C \qquad +C$$

$$\begin{array}{ccc} [+\neg A] & [+A[a/x]] \\ +\vdots & +\vdots \\ (+\neg E.) \frac{\bot}{+A} & (+\exists E.) \frac{+\exists x A +B}{+B} \\ \end{array} if a is any constant symbol not occurring in A, B or undischarged assumptions$$

(I&S, 2022b): this solves Graff Fara and Williamson's challenge

- We have simple, harmonious proof theory
- With restricted versions of the invalid classical metarules

Bas Kortenbach, SNS, Pisa

(Multilateral) Supervaluationism

MSV and the Comparison Question

However: consider reductio:

$$\frac{A, \neg B \vdash \bot}{A \vdash B}$$

-

However: consider reductio:

$$\frac{A, \neg B \vdash \bot}{A \vdash B} \quad \underbrace{\oplus p, + \neg p \vdash \bot}_{\oplus p \not\vdash + p}$$

イロト イヨト イヨト イヨト

Ξ.

MSV and the Comparison Question

However: consider reductio:

$$\frac{A, \neg B \vdash \bot}{A \vdash B} \quad \underbrace{\oplus p, + \neg p \vdash \bot}_{\oplus p \not\vdash + p}$$

This is **not** a uniform substitution

-

However: consider reductio:

$$\frac{A, \neg B \vdash \bot}{A \vdash B} \quad \underbrace{\oplus p, + \neg p \vdash \bot}_{\oplus p \not\vdash + p}$$

This is **not** a uniform substitution

Problem: It is unclear what it means for a multilateral logic to (in)validate *any* classical principle

However: consider reductio:

$$\frac{A, \neg B \vdash \bot}{A \vdash B} \quad \underbrace{\oplus p, + \neg p \vdash \bot}_{\oplus p \not\vdash + p}$$

This is **not** a uniform substitution

Problem: It is unclear what it means for a multilateral logic to (in)validate *any* classical principle

- We cannot establish on which levels SML, SML⁻, QSML⁻ behave classically
 - We don't know which departures we have to justify/explain
 - Or whether all differences are SV-necessary

However: consider reductio:

$$\frac{A, \neg B \vdash \bot}{A \vdash B} \quad \underbrace{\oplus p, + \neg p \vdash \bot}_{\oplus p \not\vdash + p}$$

This is **not** a uniform substitution

Problem: It is unclear what it means for a multilateral logic to (in)validate *any* classical principle

- We cannot establish on which levels SML, SML⁻, QSML⁻ behave classically
 - We don't know which departures we have to justify/explain
 - Or whether all differences are SV-*necessary*
- It is unclear how (I&S)'s derived rules actually relate to the classical principles they are supposed to refine

3

Goals

Develop a method for comparing valid principles of any given level (theorems, inferences, metainferences, metametainferences, ...) between uni- and multilateral logics

イロト イポト イヨト イヨト

Goals

- Develop a method for comparing valid principles of any given level (theorems, inferences, metainferences, metametainferences, ...) between uni- and multilateral logics
- 2 Apply these to determine on which levels SML, SML⁻, QSML⁻ behave classically

Goals

- Develop a method for comparing valid principles of any given level (theorems, inferences, metainferences, metametainferences, ...) between uni- and multilateral logics
- 2 Apply these to determine on which levels SML, SML⁻, QSML⁻ behave classically
- **3** Investigate potential for SV-acceptable classicality improvements

Goals

- Develop a method for comparing valid principles of any given level (theorems, inferences, metainferences, metametainferences, ...) between uni- and multilateral logics
- 2 Apply these to determine on which levels SML, SML⁻, QSML⁻ behave classically
- **3** Investigate potential for SV-acceptable classicality improvements
- 4 Reassess the response to Graff Fara and Williamson

Measuring Classicality

Bas Kortenbach, SNS, Pisa Multilateral Supervaluationism and Classicality ▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Measuring	Classicality
0000000	o ⁻

Inferential Levels and Validity

Definition

Let ${\mathcal L}$ be some formal language, with ${\mathcal L}^0$ its set of wff.

$$\mathcal{L}^{n+1} := \{ \langle \Gamma, \Psi \rangle \mid \Gamma \cup \{\Psi\} \subseteq \mathcal{L}^n \}.$$

Bas Kortenbach, SNS, Pisa Multilateral Supervaluationism and Classicality

Measuring	Classicality
0000000	o ⁻

Conclusion

Inferential Levels and Validity

Definition

Let ${\mathcal L}$ be some formal language, with ${\mathcal L}^0$ its set of wff.

$$\mathcal{L}^{n+1} := \{ \langle \mathsf{\Gamma}, \Psi \rangle \mid \mathsf{\Gamma} \cup \{\Psi\} \subseteq \mathcal{L}^n \}.$$

Level 1

Level 2

$$p \lor q, \neg q \Rightarrow^1 r
ightarrow p$$

$$\frac{p \lor q, \neg q \Rightarrow^{1} r \to p}{p \Rightarrow^{1} q \to p} 2$$

Bas Kortenbach, SNS, Pisa

Measuring	Classicality
0000000	o ⁻

Inferential Levels and Validity

Definition

Let \mathcal{L} be some formal language, with \mathcal{L}^0 its set of wff.

$$\mathcal{L}^{n+1} := \{ \langle \mathsf{\Gamma}, \Psi \rangle \mid \mathsf{\Gamma} \cup \{\Psi\} \subseteq \mathcal{L}^n \}.$$

Level 1

Level 2

$$p \lor q, \neg q \Rightarrow^1 r
ightarrow p$$

$$\frac{p \lor q, \neg q \Rightarrow^{1} r \to p}{p \Rightarrow^{1} q \to p} 2$$

Definition

- $\Gamma \Rightarrow^1 \Psi$ is valid iff $\Gamma \vdash \Psi$
- Γ ⇒ⁿ⁺¹ Ψ is valid iff either some γ ∈ Γ is not valid, or Ψ is valid (Global validity)

Bas Kortenbach, SNS, Pisa

Measuring	Classicality
0000000	o ⁻

Schematic Comparisons

Logics in different languages are compared on their inference *rules*, expressed via *schemas*

Bas Kortenbach, SNS, Pisa Multilateral Supervaluationism and Classicality

Schematic Comparisons

Logics in different languages are compared on their inference *rules*, expressed via *schemas*

E.g. in the sentential (not quantified) setting:

Definition

Take a set of metalinguistic variables $\mathcal{A} = \{A_1, A_2, A_3, ...\}$, and let \mathcal{A}^B be it's closure of under \neg and \land . The set UBS^n of level n schemas is:

 $UBS^1 := \{ \langle \Lambda, \Omega \rangle \mid \Lambda \cup \{\Omega\} \subseteq \mathcal{A}^B \}.$

 $UBS^{n+1} := \{ \langle \Lambda, \Omega \rangle \mid \Lambda \cup \{ \Omega \} \subseteq UBS^n \}.$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Bas Kortenbach, SNS, Pisa

Schematic Comparisons

Logics in different languages are compared on their inference *rules*, expressed via *schemas*

E.g. in the sentential (not quantified) setting:

Definition

Take a set of metalinguistic variables $\mathcal{A} = \{A_1, A_2, A_3, ...\}$, and let \mathcal{A}^B be it's closure of under \neg and \land . The set UBS^n of level n schemas is:

$$UBS^{1} := \{ \langle \Lambda, \Omega \rangle \mid \Lambda \cup \{ \Omega \} \subseteq \mathcal{A}^{B} \}.$$

$$UBS^{n+1} := \{ \langle \Lambda, \Omega \rangle \mid \Lambda \cup \{ \Omega \} \subseteq UBS^n \}.$$

Valid in logic \mathcal{K} on language \mathcal{L} iff valid for all substitutions $\sigma: \mathcal{A} \to \mathcal{L}^0$

▲□▶▲御▶★臣▶★臣▶ 臣 の≪

Bas Kortenbach, SNS, Pisa

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Schematic Comparisons

Logics in different languages are compared on their inference $\it rules$, expressed via $\it schemas$

E.g. in the sentential (not quantified) setting:

Definition

Take a set of metalinguistic variables $\mathcal{A} = \{A_1, A_2, A_3, ...\}$, and let \mathcal{A}^B be it's closure of under \neg and \land . The set UBS^n of level n schemas is:

 $UBS^{1} := \{ \langle \Lambda, \Omega \rangle \mid \Lambda \cup \{ \Omega \} \subseteq \mathcal{A}^{B} \}.$

 $\textit{UBS}^{n+1} := \{ \langle \Lambda, \Omega \rangle \mid \Lambda \cup \{ \Omega \} \subseteq \textit{UBS}^n \}.$

Valid in logic \mathcal{K} on language \mathcal{L} iff valid for all substitutions $\sigma: \mathcal{A} \to \mathcal{L}^0$

But: this assumes \mathcal{L}^0 is closed under \neg and \land

Bas Kortenbach, SNS, Pisa

Measuring Clas	ssicality		
00000000			

The Substitution Issue

(Conjunction Elimination): $A_1, A_2 \land A_3 \Rightarrow^1 A_2$

Q: What are its instances in a multilateral language?

1. Let A_1, A_2, A_3 range over signed formulae

• $+r, (+p) \land (+q) \Rightarrow^1 +p ?$

2. Let them range over sentences

 $\bullet r, p \land q \Rightarrow^1 p ?$

3. Let A_1, A_2, A_3 range over sentences, *then* add force-markers. But how?

3a. Include all combinations of force markers

•
$$+r, +(p \wedge q) \Rightarrow^1 \ominus p$$
?

3b. Include only 'uniform' ones (prefixing the same sign to every sentence)

$$\blacksquare \ominus r, \ominus (p \land q) \Rightarrow^1 \ominus p ?$$

3c. Only apply +

•
$$\ominus r, +(p \land q) \Rightarrow^1 + p$$

・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

Bas Kortenbach, SNS, Pisa

Multilateral Schemas

Solution: Define a separate notion of multilateral schema

Definition

Start with sentence variables $\mathcal{A} = \{A_1, A_2, A_3, ...\}$ and formula variables $\Phi = \{\varphi_1, \varphi_2, \varphi_3, ...\}$.

Bas Kortenbach, SNS, Pisa Multilateral Supervaluationism and Classicality

Multilateral Schemas

Solution: Define a separate notion of multilateral schema

Definition

Start with sentence variables $\mathcal{A} = \{A_1, A_2, A_3, ...\}$ and formula variables $\Phi = \{\varphi_1, \varphi_2, \varphi_3, ...\}$. Let \mathcal{A}^B be \mathcal{A} 's closure under \neg and \land , and $\mathcal{A}^+ = \{+X | X \in \mathcal{A}^B\}$. $MBS^1 := \{\langle \Lambda, \Omega \rangle \mid \Lambda \cup \{\Omega\} \subseteq \Phi \cup \mathcal{A}^+\}$ $MBS^{n+1} := \{\langle \Lambda, \Omega \rangle \mid \Lambda \cup \{\Omega\} \subseteq MBS^n\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 めへで

Bas Kortenbach, SNS, Pisa

Multilateral Schemas

Solution: Define a separate notion of multilateral schema

Definition

Start with sentence variables $\mathcal{A} = \{A_1, A_2, A_3, ...\}$ and formula variables $\Phi = \{\varphi_1, \varphi_2, \varphi_3, ...\}$. Let \mathcal{A}^B be \mathcal{A} 's closure under \neg and \land , and $\mathcal{A}^+ = \{+X | X \in \mathcal{A}^B\}$. $MBS^1 := \{\langle \Lambda, \Omega \rangle \mid \Lambda \cup \{\Omega\} \subseteq \Phi \cup \mathcal{A}^+\}$ $MBS^{n+1} := \{\langle \Lambda, \Omega \rangle \mid \Lambda \cup \{\Omega\} \subset MBS^n\}$

Valid in \mathcal{K} on language \mathcal{L}_S iff valid for all substitutions $\sigma = \sigma_{\mathcal{A}} \cup \sigma_{\Phi}$, with $\sigma_{\mathcal{A}} : \mathcal{A} \to \mathcal{L}^0$ and $\sigma_{\Phi} : \Phi \to \mathcal{L}^0_S$

Measuring Classicality 00000●00	Results 000	Conclusion 00000

Multilateral Schemas

• We can express rules about operators, as in e.g. (CE): $+A_1 \wedge A_2 \Rightarrow +A_1$

Measuring Classicality	Results	Conclusion
00000€00	000	00000
Multilateral Schemas		

- We can express rules about operators, as in e.g. (CE): $+A_1 \wedge A_2 \Rightarrow +A_1$
- We can express general structural rules, like (Reflexivity): $\varphi \Rightarrow \varphi$

Measuring Classicality	Results	Conclusion
00000€00	000	00000
Multilateral Schemas		

- We can express rules about operators, as in e.g. (CE): + $A_1 \land A_2 \Rightarrow +A_1$
 - We can express general structural rules, like (Reflexivity): $\varphi \Rightarrow \varphi$
 - We can express rules that combine these aspects, such as (Multilateral Reductio):

$$\frac{\varphi, + \neg A \Rightarrow \bot}{\varphi \Rightarrow + A}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Multilateral Schemas

- We can express rules about operators, as in e.g. (CE): $+A_1 \wedge A_2 \Rightarrow +A_1$
- We can express general structural rules, like (Reflexivity): $\varphi \Rightarrow \varphi$
- We can express rules that combine these aspects, such as (Multilateral Reductio):

$$\frac{\varphi, + \neg A \Rightarrow \bot}{\varphi \Rightarrow + A}$$

Which has instances such as:

$$\begin{array}{c} \oplus p, +\neg p \Rightarrow \bot \\ \oplus p \Rightarrow +p \end{array}$$

イロト イボト イヨト イヨト

3

Bas Kortenbach, SNS, Pisa

イロト イヨト イヨト イヨト

Ξ.

Unilateralization

Definition

The **Unilateralization** operation $U: MBS^n \rightarrow UBS^n$ simply turns φ 's to (fresh) *A*'s, and erases +

Bas Kortenbach, SNS, Pisa Multilateral Supervaluationism and Classicality

E 990

Unilateralization

Definition

The **Unilateralization** operation $U: MBS^n \rightarrow UBS^n$ simply turns φ 's to (fresh) *A*'s, and erases +

(MR): (CR): $\begin{array}{c} \varphi, +\neg A \Rightarrow \bot \\ \hline \varphi \Rightarrow +A \end{array} \xrightarrow{Unilateralization} \begin{array}{c} A_1, \neg A_2 \\ \hline A_1 \end{array}$

$$\frac{A_1, \neg A_2 \Rightarrow \bot}{A_1 \Rightarrow A_2}$$

イロト イヨト イヨト イヨト

Bas Kortenbach, SNS, Pisa

Unilateralization

Definition

The **Unilateralization** operation $U: MBS^n \rightarrow UBS^n$ simply turns φ 's to (fresh) *A*'s, and erases +

$\begin{array}{cc} \textbf{(MR):} & \textbf{(CR):} \\ \hline \varphi, +\neg A \Rightarrow \bot \\ \hline \varphi \Rightarrow +A & \underline{\quad Unilateralization} \\ \hline & A_1, \neg A_2 \Rightarrow \bot \\ \hline & A_1 \Rightarrow A_2 \end{array}$

So: MSV systems depart from classical logic at level 2, because they invalidate (MR), while classical logic validates U[(MR)]=(CR)

Bas Kortenbach, SNS, Pisa Multilateral Supervaluationism and Classicality

Multilateral Classicality

Q: When is a multilateral logic \mathcal{K} 'classical' on some inferential level *n*?

Bas Kortenbach, SNS, Pisa Multilateral Supervaluationism and Classicality

Multilateral Classicality

Q: When is a multilateral logic \mathcal{K} 'classical' on some inferential level *n*?

A: When any level *n* multilateral schema is valid in \mathcal{K} iff its unilateralization is classically valid.

Multilateral Classicality

Q: When is a multilateral logic \mathcal{K} 'classical' on some inferential level *n*?

A: When any level *n* multilateral schema is valid in \mathcal{K} iff its unilateralization is classically valid.

Moreover: \mathcal{K} is strictly weaker/stronger than classical logic on *n* when the entailment only goes in one direction

Bas Kortenbach, SNS, Pisa Multilateral Supervaluationism and Classicality ▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

$\mathsf{SML}\xspace$ and SML^-

Theorem

Both SML and SML⁻ are:

- Precisely classical on level 1
- Strictly weaker than classical logic on every n > 1

Ξ.

$\mathsf{SML}\xspace$ and SML^-

Theorem

Both SML and SML⁻ are:

- Precisely classical on level 1
- Strictly weaker than classical logic on every n > 1

This is expected for SV logics

Bas Kortenbach, SNS, Pisa Multilateral Supervaluationism and Classicality

$\mathsf{SML}\xspace$ and SML^-

Theorem

Both SML and SML⁻ are:

- Precisely classical on level 1
- Strictly weaker than classical logic on every n > 1

This is expected for SV logics

Moreover: We cannot do better

Theorem

Any logic at least as strong as SML^- but classical at level 2 won't allow for borderline cases:

$$\blacksquare + \neg \Delta A \land \neg \Delta \neg A \vdash \bot$$

・ロト・西・・田・・田・ うぐら

Bas Kortenbach, SNS, Pisa

э.

SML and $\ensuremath{\mathsf{SML}^{-}}$

Theorem

Both SML and SML⁻ are:

- Precisely classical on level 1
- Strictly weaker than classical logic on every n > 1

This is expected for SV logics

Moreover: We cannot do better

Theorem

Any logic at least as strong as SML^- but classical at level 2 won't allow for borderline cases:

 $\blacksquare + \neg \Delta A \land \neg \Delta \neg A \vdash \bot$

Conclusion: Failure of metainferences is *necessary* for the (multilateral) supervaluationist

Bas Kortenbach, SNS, Pisa

Measuring Classicality 00000000	Results 00●	Conclusion 00000
QSML ⁻		
Theorem		

∃ 990

イロト イヨト イヨト イヨト

 QSML^- is strictly weaker than classical logic on \mathbf{every} inferential level

• it fails substitution of identicals in Δ -contexts.

Measuring Classicality	Results	Conclusion
0000000	oo●	00000

QSML⁻¹

Theorem

QSML⁻ is strictly weaker than classical logic on every inferential level

• it fails substitution of identicals in Δ -contexts.

This is not an expected result for SV

But again we cannot do better

Theorem

Any ND which derives the rules of $QSML^-$ but is classical on level 1 doesn't leave room for higher-order vagueness:

Related to work by Graff Fara (2003) and Zardini (2013)

Bas Kortenbach, SNS, Pisa

Measuring Classicality	Results	Conclusion
00000000	oo●	00000

QSML^-

Theorem

QSML⁻ is strictly weaker than classical logic on every inferential level

• it fails substitution of identicals in Δ -contexts.

This is not an expected result for SV

But again we cannot do better

Theorem

Any ND which derives the rules of $QSML^-$ but is classical on level 1 doesn't leave room for higher-order vagueness:

Related to work by Graff Fara (2003) and Zardini (2013)

Bas Kortenbach, SNS, Pisa

Conclusion

Bas Kortenbach, SNS, Pisa Multilateral Supervaluationism and Classicality ▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

	Measuring Classicality 0000000	Results 000	
--	-----------------------------------	----------------	--

Sentential Acceptability

For SML, SML⁻:

- **1** Results that the failure of the metainferences is the only departure from classicality we need to answer for
 - it all boils down to (MR)

	Measuring Classicality 00000000	Results 000	
--	------------------------------------	----------------	--

Sentential Acceptability

For SML, SML⁻:

- **1** Results that the failure of the metainferences is the only departure from classicality we need to answer for
 - it all boils down to (MR)
- 2 Failure of (MR) was *necessary*

イロト イポト イヨト イヨト

3

Sentential Acceptability

For SML, SML^- :

1 Results that the failure of the metainferences is the only departure from classicality we need to answer for

it all boils down to (MR)

- 2 Failure of (MR) was *necessary*
- 3 We can relate (I&S, 2022b) derived restricted rules to the respective classical principles

Recall the question how e.g. $(+\neg E.)$ relates to *reductio*

$$[+\neg A]$$

$$+:$$

$$(+\neg E.) \frac{\bot}{+A}$$

Sentential Acceptability

For SML, SML⁻:

1 Results that the failure of the metainferences is the only departure from classicality we need to answer for

■ it all boils down to (MR)

- 2 Failure of (MR) was necessary
- 3 We can relate (I&S, 2022b) derived restricted rules to the respective classical principles

Recall the question how e.g. $(+\neg E.)$ relates to reductio

$$\begin{array}{c} [+\neg A] & [+\neg A] \\ +\vdots & \vdots \\ (+\neg E.) \xrightarrow{\perp} +A & \underline{Restrict.} & (+\neg E.^*) \xrightarrow{\perp} +A \end{array}$$

Bas Kortenbach, SNS, Pisa

イロト イポト イヨト イヨト

3

Sentential Acceptability

For SML, SML⁻:

1 Results that the failure of the metainferences is the only departure from classicality we need to answer for

■ it all boils down to (MR)

- 2 Failure of (MR) was necessary
- 3 We can relate (I&S, 2022b) derived restricted rules to the respective classical principles

Recall the question how e.g. $(+\neg E.)$ relates to reductio

$$\begin{array}{ccc} [+\neg A] & [+\neg A] \\ +\vdots & \vdots \\ (+\neg \mathsf{E}.) \xrightarrow{\perp} & \underline{}_{Restrict.} & (+\neg \mathsf{E}.^*) \xrightarrow{\perp} & \underline{}_{Admis./Val.} & \frac{\varphi, +\neg A \Rightarrow \bot}{\varphi \Rightarrow +A} \end{array}$$

Bas Kortenbach, SNS, Pisa

Sentential Acceptability

For SML, SML⁻:

1 Results that the failure of the metainferences is the only departure from classicality we need to answer for

■ it all boils down to (MR)

- 2 Failure of (MR) was necessary
- 3 We can relate (I&S, 2022b) derived restricted rules to the respective classical principles

Recall the question how e.g. $(+\neg E.)$ relates to reductio

$$\begin{array}{cccc} [+\neg A] & [+\neg A] \\ +\vdots & \vdots \\ (+\neg E.) \xrightarrow{\perp} +A & \underline{}_{Restrict.} & (+\neg E.^*) \xrightarrow{\perp} +A & \underline{}_{Admis./Val.} & \underline{\varphi, +\neg A \Rightarrow \bot} \\ & \underline{A_{1}, \neg A_{2} \Rightarrow \bot} \\ & \underline{A_{1}, \neg A_{2} \Rightarrow \bot} \\ \hline \end{array}$$

Bas Kortenbach, SNS, Pisa

Sentential Acceptability

For SML, SML⁻:

1 Results that the failure of the metainferences is the only departure from classicality we need to answer for

■ it all boils down to (MR)

- 2 Failure of (MR) was necessary
- 3 We can relate (I&S, 2022b) derived restricted rules to the respective classical principles

Recall the question how e.g. $(+\neg E.)$ relates to reductio

$$\begin{array}{cccc} [+\neg A] & [+\neg A] \\ +\vdots & \vdots \\ (+\neg E.) \xrightarrow{\perp} & \underline{}_{Restrict.} & (+\neg E.^{*}) \xrightarrow{\perp} & \underline{}_{Admis./Val.} & \underline{\varphi, +\neg A \Rightarrow \bot} \\ & \underline{}_{\varphi \Rightarrow +A} & \underline{}_{Unilat.} \\ & \underline{}_{A_{1}, \neg A_{2} \Rightarrow \bot} \\ & \underline{}_{A_{1} \Rightarrow A_{2}} & \underline{}_{Expresses} & \text{Reductio} \\ \end{array}$$

Bas Kortenbach, SNS, Pisa

First-order Acceptability

For QSML⁻:

- **1** We now know that the failure of the metainferences is **not** the only departure from classicality we need to answer for
- 2 The failure of =-substitution raises a new instance of Acceptability
 - (I &S, 2022b) suggest a contextual reading: different ways of referring to one object may be associated with different standards of definite tallness/darkness/...
 - This reading justifies failure of =-substitution in Δ -contexts
- **3** Results that =-substitution is the only level 1 departure from classicality to answer for
- 4 It is necessary to account for higher-order vagueness

General Takeaways

Multilateral logic is relatively uncharted territory

Isolated due to syntax

General Takeaways

- Multilateral logic is relatively uncharted territory
- Isolated due to syntax
- Multilateral schemas and their Unilateralization can act as a bridge
- Understanding/intuitions about unilateral logic can be brought to bear on the multilateral setting

General Takeaways

- Multilateral logic is relatively uncharted territory
- Isolated due to syntax
- Multilateral schemas and their Unilateralization can act as a bridge
- Understanding/intuitions about unilateral logic can be brought to bear on the multilateral setting
- SV and classical logic are a case study

э.

References

Graff Fara, D. (2003). Gap principles, penumbral consequence, and infinitely higher-order vagueness. In J. C. Beall (Ed.), *New essays on the semantics of paradox*. Oxford University Press.

Incurvati, L., & Schlöder, J. J. (2019). Weak assertion. *The Philosophical Quarterly, 69* (277), 741–770.

Incurvati, L., & Schlöder, J. J. (2022a). Epistemic multilateral logic. *The Review of Symbolic Logic*, *15* (2), 505–536.

Incurvati, L., & Schlöder, J. J. (2022b). Meta-inferences and Supervaluationism. *Journal of Philosophical Logic, 51*, 1549–1582.

Williamson, T. (2018). Supervaluationism and good reasoning. THEORIA. Revista de Teoría, Historia y Fundamentos de la Ciencia, 33 (3), 521–537.

Zardini, E. (2013). Higher-order sorites paradox. Journal of Philosophical Logic, 42, 25–48. 35

Bas Kortenbach, SNS, Pisa