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Finite vs infinite

• Infinite is good:

◮ Ingrained in spacial intuition

◮ Required in formalization (calculus)

◮ Essential to generality of mathematics (Poincaré)

◮ Central in abstractions (functionals...)

• BUT not without reservation:

◮ Infinity is at the core of paradoxes

◮ The universe is likely finite

◮ Spacial continuity is a deception

• Infinity is essential, finiteness remains fundamental.
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Hilbert’s Program

• Response to the Foundations Crisis:

• Trying to have it both ways.

”Infinity is just a figure of speech”:

Show by finitistic means that mathematics,

actual infinite and all, is at least consistent

• Smashed by Gödel: Consistency unprovable, let alone us-

ing just finitistic means

• A MIRROR PROJECT (Tait):

Delineate the finitistic core of mathematics

without recourse to the infinite.
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• Hilbert/Bernays: Admit at least Primitive Recursive Math-

ematics.

• Recurrence over NNN (Skolem 1932):

Define f : N ×X → Xf : N ×X → Xf : N ×X → X from g0g0g0 and gsgsgs .

f(0, X)f(0, X)f(0, X) === g0(X)g0(X)g0(X)

f(s(n), X)f(s(n), X)f(s(n), X) === gs(f(n,X), X, n)gs(f(n,X), X, n)gs(f(n,X), X, n)

• + defined using X = NX = NX = N from 0 and successor.

Using X = N × (N → N)X = N × (N → N)X = N × (N → N) yields Ackermann’s function

• PR functions: Generated from constructors using

recurrence for X = N
kX = N
kX = N
k and explicit definitions.
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Primitive Recursive Arithmetic

• A formal mathematical theory for the PR world.

• Symbols and defining equations for all PR functions.

• Induction template:

(∀n ϕ[n]→ϕ[sn]) → ϕ[0] → ϕ[x](∀n ϕ[n]→ϕ[sn]) → ϕ[0] → ϕ[x](∀n ϕ[n]→ϕ[sn]) → ϕ[0] → ϕ[x] ϕϕϕ quantifier-free

• Hilbert/Bernays admitted PR, didn’t claim it exhausts finitism.

• Some in the 1990s:

Induction is finitistic. Why can’t ϕϕϕ be any formula?

• Tait (2002,2012): ϕϕϕ should be predicative:

whereas ∀∀∀ in ϕϕϕ presupposes NNN as totality.

• Tait’s Thesis: Finitistic Mathematics is precisely PRA.
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Articulating finitism explicitly

• Looking closer, even formal PRA is not finitistic:

it refers to PR functions, i.e. infinite objects.

• Something more is needed to justify Tait’s Thesis.

• If finitism should stand on its own feet,

it should be built up, not down.

• Focusing on finite sets impedes basic data-changes.

We take finite functions (ff’s) of arity 0,1,2 over “atoms.”
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Finite data systems (FDS)

• Vocabulary: A finite set VVV of fnc-ids of arity 0,1, or 2.

• VVV -FDS (Finite Data System):

A mapping assigning to each f ∈ Vf ∈ Vf ∈ V

a finite-function (ff) of corresponding arity.

A VVV -molecule is a WWW -FDS for some W ⊆ VW ⊆ VW ⊆ V .

• The universe of a FDS is

the union of the domains and co-domains of its ff’s.
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Denotations

• VVV -terms are generated from VVV as usual.

A reserved id ωωω denotes “undefined”.

Terms without it are standard.

• A standard VVV -term ttt has a value tσtσtσ in a VVV -molecule σσσ .
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Examples: Molecules for numbers and strings

Natural number 3:
ss z

sssz ssz  sz

s

String 110
01

110e 10e 0e

1
e

• The box is an optional pointer to refer to the molecule.

• Each example is an FDS, as is their union.

Considering the union as two molecules is optional.

• A second box would require a fresh id.

LFCS2020 10



Computing with FDSs



Updates

• A generic basic operation.

• Updates: f t1 · · · tk := qf t1 · · · tk := qf t1 · · · tk := q



Updates

• A generic basic operation.

• Updates: f t1 · · · tk := qf t1 · · · tk := qf t1 · · · tk := q

• Special cases:

◮ Contractions: f t1 · · · tk := ωf t1 · · · tk := ωf t1 · · · tk := ω



Updates

• A generic basic operation.

• Updates: f t1 · · · tk := qf t1 · · · tk := qf t1 · · · tk := q

• Special cases:

◮ Contractions: f t1 · · · tk := ωf t1 · · · tk := ωf t1 · · · tk := ω

◮ Inceptions: c := qc := qc := q where σ(c) = ⊥σ(c) = ⊥σ(c) = ⊥
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Example: A concatenation algorithm

’s’s ’s’s
z

ss zs

’’
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Imperative programs

• Here is an imperative programming language

that best serves our principle proof-theoretic goals.

• Programs are generated from updates using

◮ Composition: P ;QP ;QP ;Q

◮ Branching: if [t = q] {P} {Q}if [t = q] {P} {Q}if [t = q] {P} {Q}

◮ Iteration: do [T ]{P}do [T ]{P}do [T ]{P} (T ⊂ V )(T ⊂ V )(T ⊂ V )

• Semantics: Iteration repeats 6 |σ(T )|6 |σ(T )|6 |σ(T )| times.
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Programs

• Theorem.

A fnct over NNN is computable by a program iff it is PR.

• ⇒:⇒:⇒: Every program over molecules for NNN

yields a PR function because the semantics of programs

is coded in PRA.

• ⇐:⇐:⇐: Every PR is computable by a program because

the recurrence schema is implementable by a loop with

a counter.
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A formal language

• A-variables u, v, . . .u, v, . . .u, v, . . . for atoms.

ff-variables f, g, . . .f, g, . . .f, g, . . . for ffs.

• Formulas: Generated from equations between terms

using connectives & quantifiers

◮ Elementary formulas: No ff-quantifiers

◮ Concrete formulas:

Also allowing positively-occurring ∃f∃f∃f .
E.g. ∃f1 . . . fk ψ∃f1 . . . fk ψ∃f1 . . . fk ψ, ψψψ elementary.

• Concrete formulas have no reference to infinities.

Occurrence of ∃∃∃-ff points to an un-named function!
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Some concrete formulas

• Molecule isomorphism is definable

by a concrete formula.

• The molecules representing natural numbers

are definable by the conjunction of

◮ The separation properties

(∀u, v (su = sv → u = v)(∀u, v (su = sv → u = v)(∀u, v (su = sv → u = v) and su 6= zsu 6= zsu 6= z

◮ Totality (u = z ∨ ∃v sv = u)(u = z ∨ ∃v sv = u)(u = z ∨ ∃v sv = u)

◮ Linearity:

Existence of a linear order, extending sss,

on the domain of z,sz,sz,s.

• Inequality on NNN is definable as the existence

of a non-surjective embedding.
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A concrete theory of FDSs

Here is a theory for FDSs

referring only to concrete formulas.

• Empty-ff ∃f ∀u1 . . . uk fu1 · · ·uk = ω∃f ∀u1 . . . uk fu1 · · ·uk = ω∃f ∀u1 . . . uk fu1 · · ·uk = ω

• Strictness ui=ω → fu1 · · ·uk = ωui=ω → fu1 · · ·uk = ωui=ω → fu1 · · ·uk = ω

• Update ∃g g(~u) = v ∧ ∀~x ~x 6= ~u → g(~x) = f(~x)∃g g(~u) = v ∧ ∀~x ~x 6= ~u → g(~x) = f(~x)∃g g(~u) = v ∧ ∀~x ~x 6= ~u → g(~x) = f(~x)

Definitional extension: f~u!vf~u!vf~u!v.

• Unboundedness ∃~u f k~u = ω∃~u f k~u = ω∃~u f k~u = ω
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• Concrete-Induction-Rule For ϕϕϕ concrete

⊢ ϕ[∅] ⊢ ϕ[f ] → ϕ[f~u!v]

ϕ[j]

⊢ ϕ[∅] ⊢ ϕ[f ] → ϕ[f~u!v]

ϕ[j]
⊢ ϕ[∅] ⊢ ϕ[f ] → ϕ[f~u!v]

ϕ[j]

• When ϕϕϕ is ∃~g ϕ0[f, g]∃~g ϕ0[f, g]∃~g ϕ0[f, g] (ϕ0
ϕ0ϕ0 elementary)

the second premise is concrete, since it is equivalent to

ϕ0[f, h] → ∃g dfn(g) ∧ ϕ0[f, g]ϕ0[f, h] → ∃g dfn(g) ∧ ϕ0[f, g]ϕ0[f, h] → ∃g dfn(g) ∧ ϕ0[f, g] (hhh fresh)

• The induction axiom for concrete ϕϕϕ is not concrete:

The premise is of the Induction Schema is

∀f ∀~u, v ϕ[f ] → ϕ[f~u!v]∀f ∀~u, v ϕ[f ] → ϕ[f~u!v]∀f ∀~u, v ϕ[f ] → ϕ[f~u!v]

so ∀∀∀ counts as a positive existential in the schema

but its scope is not concrete.
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FDS is complete for PRA

• Recall: PRA is quantifier-free induction over PR-functions.

• We show that PRA is interpretable in FDS, i.e.:

1. PR functions are represented by concrete FDS-formulas

2. Quantifier-free formulas of PRA are interpreted by con-

crete FDS-formulas.

3. The interpretation of PRA induction for these formulas

is derived from FDS induction.
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Representing PR functions

• Every PR function is computable by an FDS-program,

and therefore representable by a concrete FDS-formula.

◮ Proved by discourse induction on the PR definition.

◮ Each step uses formal FDS-induction

to prove the existence of a computation trace.
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Interpreting quantifier-free numeric formulas

• PRA equality is represented in FDS by isomorphism.

• Isomorphism and numeric-inequality

are definable by concrete formulas,

so qf formulas of PRA are interpreted in FDS

by concrete formulas.
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Interpreting PRA induction

• By Parson’s Theorem PRA induction is captured by the Σ1Σ1Σ1

induction rule.

• Since NNN is definable by a concrete formula,

Σ1Σ1Σ1 formulas are interpreted by concrete formulas.
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Conversely, FDS is sound for PRA

• Since all ff’s are codable in PRA as numbers,

FDS is interpretable in PRA,

with concrete fmls interpreted as existential fmls of PRA,

and so admissible in PRA by Parson’s Theorem.
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In a word...

We focused on the “hardware” of finitism,

constructed a first-order theory of that hard-

ware,

and showed that it is proof-theoretically

equivalent

to primitive recursive arithmetic.

In a word, Tait’s Thesis is vindicated!


