An algebraic representation of information types

Vít Punčochář

Institute of Philosophy Czech Academy of Sciences Czech Republic

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

to explain the notion of information type

- to show that information types can be combined by logical operators
- to show that there are logical relations among information types
- to develop an algebraic semantics for the logic of information types

- to explain the notion of information type
- to show that information types can be combined by logical operators
- to show that there are logical relations among information types
- to develop an algebraic semantics for the logic of information types

- to explain the notion of information type
- to show that information types can be combined by logical operators
- to show that there are logical relations among information types
- to develop an algebraic semantics for the logic of information types

- to explain the notion of information type
- to show that information types can be combined by logical operators
- to show that there are logical relations among information types
- to develop an algebraic semantics for the logic of information types

Inquisitive semantics

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Questions are types of propositions (information types)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ciardelli, I. (2018) Questions as information types

Information tokens vs. information types

Possible states:

Information tokens:

a is a circle, b is a triangle, a is red, ...

Information types:

shape of a, shape of b, colour of a, colour of b

 \blacktriangleright a is a triangle \vDash_C b is red

- ▶ a is a circle \nvDash_C b is red
- ▶ colour of b, shape of $a \models_C$ colour of a
- ▶ colour of b, shape of a \nvDash_C shape of b

Information tokens vs. information types

Possible states:

Information tokens:

a is a circle, b is a triangle, a is red, ...

Information types:

shape of a, shape of b, colour of a, colour of b

- \blacktriangleright a is a triangle \vDash_C b is red
- ▶ a is a circle \nvDash_C b is red
- colour of b, shape of $a \vDash_C$ colour of a
- ▶ colour of b, shape of a \nvDash_C shape of b

Information tokens vs. information types

Possible states:

Information tokens:

a is a circle, b is a triangle, a is red, ...

Information types:

shape of a, shape of b, colour of a, colour of b

- \blacktriangleright a is a triangle \models_C b is red
- ▶ a is a circle \nvDash_C b is red
- colour of b, shape of $a \vDash_C$ colour of a
- colour of b, shape of a \nvDash_C shape of b

Combining information types: conjunction

type:

i

the shape of a and the colour of b its tokens:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- a is a circle and b is blue
- a is a triangle and b is red

Combining information types: disjunction

type:

the shape of a or the colour of b

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

its tokens:

÷

a is a circle

b is blue

Combining information types: implication

type:

► type of dependencies of the shape of a on the colour of b its tokens:

- if b is red then a is a circle, if b is blue then a is a triangle, if b is green . . .
- if b is green then a is a triangle, if b has any other colour then a is a circle

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Combining information types: implication

Tokens of type φ :

- ► Kateřina got 0 points, ..., Kateřina got 100 points
- Tokens of type ψ :
 - Kateřina passed the exam, Kateřina didn't pass the exam

Tokens of type $\varphi \rightarrow \psi$:

- If Kateřina got > 60 points then she passed the exam and if she got ≤ 60 points she did not pass
- If Kateřina got > 50 points then she passed the exam and if she got ≤ 50 points she did not pass

Quantifiers: all

type:

its tokens:

i

a is red and b is blue and c is . . .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

all objects are green

Quantifiers: some

type:

the colour of some objects
its tokens:
a is red

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

÷

From types to propositions

Given a type φ we can form the following proposition:
▶ some token of the the type φ holds (∘φ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

First-order language

The language of types:

 $\varphi, \psi ::= \bot \mid Pt_1 \dots t_n \mid \varphi \land \psi \mid \varphi \to \psi \mid \forall x \varphi \mid \psi \lor \varphi \mid \exists x \varphi \mid \circ \varphi$

The sublanguage of tokens:

$$\alpha, \beta ::= \bot \mid Pt_1 \dots t_n \mid \alpha \land \beta \mid \alpha \to \beta \mid \forall x \alpha \mid \circ \varphi$$

Defined symbols:

$$\neg \varphi =_{def} \varphi \to \bot, \varphi \leftrightarrow \psi =_{def} (\varphi \to \psi) \land (\psi \to \varphi)$$
$$\varphi \lor \psi =_{def} \circ (\varphi \lor \psi), \exists x \varphi =_{def} \circ \exists x \varphi$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In inquisitive logic:

- Pa V Qa represents the question whether a has the property P or the property Q
- ► ○(Pa ∨ Qa) would be the presupposition of the question, i.e. the proposition that a has the property P or the property Q
- ► ∃xPx represents the question what is an object that has the property P
- o∃xPx would be the presupposition of the question, i.e. the proposition that there is an object that has the property P

The reformulation in terms of types:

- ▶ $Pa \lor Qa$ represents the type with tokens Pa, Pb,
- ○(Pa ∨ Qa) is the statement that some token of the type Pa ∨ Qa holds: i.e. the proposition Pa ∨ Qa
- $\exists x P x$ is the type of instances of P x
- ▶ $\circ \exists x P x$ is the statement that some token of the type $\exists x P x$ holds: i.e. the proposition $\exists x P x$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Some formalizations

- ► the shape of a: ∃xSxa
- the shape of a and the colour of b: $\exists xSxa \land \exists yCyb$
- the shape of a or the colour of b: $\exists x S xa \lor \exists y Cyb$
- the colour of all objects: $\forall x \exists y Cyx$
- the colour of some objects: $\exists x \exists y Cyx$
- dependence of the shape of a on the colour of b: ∃yCyb → ∃xSxa
- the colour of a is dependent on the colour of b: ○(∃yCyb → ∃xSxa)

Complete Heyting algebra

A complete Heyting algebra (cHA) is any structure

$$\mathcal{H} = \langle H, \bigvee, \bigwedge, \Rightarrow, 0 \rangle,$$

where

- $\langle H, \bigvee, \bigwedge \rangle$ is a complete lattice,
- 0 is its least element
- ⇒ is a relative pseudocomplement, i.e. a binary operation on H satisfying the residuation condition:

$$u \leq s \Rightarrow t \text{ iff } u \land s \leq t.$$

Complete Heyting algebras correspond to "frames" of point-free topology

Complete Heyting algebras coincide with complete lattices satisfying the following infinitary distributive law:

$$s \wedge \bigvee_{i \in I} t_i = \bigvee_{i \in I} (s \wedge t_i).$$

In every such lattice, relative pseudocomplement satisfying the residuation condition can be defined as follows:

$$s \Rightarrow t = \bigvee \{ u \in H \mid s \land u \leq t \}.$$

• is a lax modality (Fairtlough 1997)

Nucleus (the algebraic counterpart of the lax modality)

A nucleus on a Heyting algebra \mathcal{H} is a function $j : H \to H$ such that for each $s, t \in H$:

(a)
$$s \le j(s)$$
,
(b) $j(j(s)) = j(s)$,
(c) $j(s \land t) = j(s) \land j(t)$.

(every nucleus is a closure operator)

A nucleus is dense if j(0) = 0.

A nuclear cHA (ncHA) is a cHA equipped with a nucleus.

If H is an ncHA, the set jH = {j(s) | s ∈ H} of all its fixed points will be called the core of H.

The core elements will be called propositions.

Kripkean ncHAs

Let $\mathcal{H} = \langle H, \bigvee, \bigwedge, \Rightarrow, 0 \rangle$ be a cHA. Take the structure $Dw(\mathcal{H}) = \langle DwH, \bigcup, \bigcap, \Rightarrow, \{0\}, dj \rangle$

where

- DwH is the set of all non-empty downsets of \mathcal{H} ,
- ► U and ∩ are (infinitary) union and intersection,
- \blacktriangleright \Rightarrow is defined as follows:

$$X \Rrightarrow Y = \bigcup \{ Z \in DwH \mid Z \cap X \subseteq Y \},\$$

and dj as follows:

$$dj(X) = \downarrow \bigvee X.$$

We will call these structures Kripkean ncHAs.

Propositions are closed under implication, conjunction and universal quantification. Moreover, contradiction is a proposition.

Claim

The core of any ncHA is closed under \bigwedge and \Rightarrow . In dense ncHAs, the core contains 0.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Propositions form an cHA

If $\mathcal{H} = \langle H, \bigvee, \bigwedge, \Rightarrow, 0, j \rangle$ is a dense ncHA, we can define the structure

$$j\mathcal{H} = \langle jH, \bigvee^j, \bigwedge, \Rightarrow, 0 \rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where

Claim *jH is a cHA*.

First-order frames

- ▶ by a first-order algebraic frame we will understand a pair *F* = ⟨*H*, *D*⟩, where *H* is an ncHA and *D* is a non-empty set (the domain of quantification).
- a valuation in *F* is defined as a function *V* which assigns to any *n*-ary predicate *P* a function *V*(*P*) : *Dⁿ* → *H*

▶ we say that a valuation V is informative, if for any *n*-ary predicate P we have $V(P) : D^n \rightarrow jH$

First-order models

- a first-order algebraic model is an algebraic frame equipped with a valuation
- a regular algebraic model is an algebraic model in which the valuation is informative.
- a Kripkean algebraic model is a regular algebraic model based on a Kripkean ncHA.

Evaluation

An evaluation (asignment) in U is a function that assigns to each variable of the language an element of D. If e is an evaluation, x a variable, and $a \in D$, then e(a/x) is the evaluation that assigns a to x and e(y) to any other variable y. For any term t, $V^e(t)$ is identical with V(t) if t is a name, and with e(t) if t is a variable.

Algebraic value of a formula in a ncHA

$$|\perp|_{e}^{\mathcal{N}} = 0,$$

$$|Pt_{1}...t_{n}|_{e}^{\mathcal{N}} = V(P)(V^{e}(t_{1}),...,V^{e}(t_{n})),$$

$$|\varphi \wedge \psi|_{e}^{\mathcal{N}} = |\varphi|_{e}^{\mathcal{N}} \wedge |\psi|_{e}^{\mathcal{N}},$$

$$|\varphi \rightarrow \psi|_{e}^{\mathcal{N}} = |\varphi|_{e}^{\mathcal{N}} \Rightarrow |\psi|_{e}^{\mathcal{N}},$$

$$|\forall x \varphi|_{e}^{\mathcal{N}} = \bigwedge_{a \in D} |\varphi|_{e(a/x)}^{\mathcal{N}},$$

$$|\circ \varphi|_{e}^{\mathcal{N}} = j(|\varphi|_{e}^{\mathcal{N}})$$

$$|\varphi \lor \psi|_{e}^{\mathcal{N}} = |\varphi|_{e}^{\mathcal{N}} \lor |\psi|_{e}^{\mathcal{N}},$$

$$|\exists x \varphi|_{e}^{\mathcal{N}} = \bigvee_{a \in D} |\varphi|_{e(a/x)}^{\mathcal{N}}.$$

<□ > < @ > < E > < E > E のQ @

Validity

- an *L*-formula φ is *e*-valid in \mathcal{N} , if $|\varphi|_e^{\mathcal{N}} = 1$
- $\blacktriangleright \ \varphi \text{ is valid in } \mathcal{N} \text{ if for every evaluation } e \text{ in } \mathcal{N}, \ \varphi \text{ is } e\text{-valid in } \mathcal{N}$
- \varphi is valid in an algebraic frame if it is valid in every algebraic model based on that frame.

Logics

- the logic of all algebraic models is first-order lax logic
- the logic of all regular algebraic models is first-order lax logic plus the following axiom:

 $\circ \alpha \to \alpha, \text{ for elementary formulas}$

the logic of all Kripkean models is first-order intuitionistic inquisitive logic validating:

$$(\alpha \to (\psi \otimes \chi)) \to ((\alpha \to \psi) \otimes (\alpha \to \chi))$$
$$(\alpha \to \exists x \psi) \to \exists x (\alpha \to \psi), \text{ if } x \notin FV(\alpha)$$

Representing functions

Let $X, Y \subseteq jH$ and $f : X \to Y$. Let

$$s_f = \bigwedge_{t \in X} (t \Rightarrow f(t))$$

The element s_f represents the function f in \mathcal{H} .

Representation of types

$$\mathcal{T}_{e}(Pt_{1}...t_{n}) = \{|Pt_{1}...t_{n}|_{e}\}, \mathcal{T}_{e}(\bot) = \{0\},$$

$$\mathcal{T}_{e}(\varphi \land \psi) = \{s \land u \mid s \in \mathcal{T}_{e}(\varphi), u \in \mathcal{T}_{e}(\psi)\},$$

$$\mathcal{T}_{e}(\varphi \rightarrow \psi) = \{s_{f} \mid f : \mathcal{T}_{e}(\varphi) \rightarrow \mathcal{T}_{e}(\psi)\},$$

$$\mathcal{T}_{e}(\forall x\varphi) = \{\bigwedge_{a \in D} f(a) \mid f \in \prod_{a \in D} \mathcal{T}_{e(a/x)}(\varphi)\},$$

$$\mathcal{T}_{e}(\circ\varphi) = \{j(\bigvee \mathcal{T}_{e}(\varphi))\},$$

$$\mathcal{T}_{e}(\varphi \lor \psi) = \mathcal{T}_{e}(\varphi) \cup \mathcal{T}_{e}(\psi),$$

$$\mathcal{T}_{e}(\exists x\varphi) = \bigcup \{\mathcal{T}_{e(a/x)}(\varphi) \mid a \in U\}.$$

One can observe that for any formula φ , $\mathcal{T}_{e(a/x)}^{\mathcal{N}}(\varphi)$ is a set of core elements (i.e. declarative propositions) in \mathcal{N}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Typical ncHAs

Let $\mathcal{H} = \langle H, \bigvee, \bigwedge, \Rightarrow, 0, j \rangle$ be an ncHA. We say that \mathcal{H} is typical if j is dense and the following two conditions are satisfied for every $s \in H$ and any collection of indexed elements $t_i, u_{ik} \in H$, where $i \in I$ and $k \in K$ for some index sets I, K:

(a)
$$j(s) \Rightarrow \bigvee_{i \in I} t_i = \bigvee_{i \in I} (j(s) \Rightarrow t_i),$$

(b) $\bigwedge_{i \in I} \bigvee_{k \in K} j(u_{ik}) = \bigvee_{f:I \to K} \bigwedge_{i \in I} j(u_{if(i)}).$

An algebraic frame (model) is called typical if it is based on a typical ncHA.

A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q

Arbitrary elements behave as types of the core elements

Theorem

Let $\mathcal{N} = \langle \mathcal{H}, U, V \rangle$ be a regular algebraic model, e an evaluation in U, and φ an L-formula. If \mathcal{N} is typical then

$$|\varphi|_{e}^{\mathcal{N}} = \bigvee \mathcal{T}_{e}^{\mathcal{N}}(\varphi).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A connection between typical and Kripkean ncHAs

Definition

Let \mathcal{H}_1 , \mathcal{H}_2 be ncHAs. A homomorphism from \mathcal{H}_1 to \mathcal{H}_2 is a function $h: \mathcal{H}_1 \to \mathcal{H}_2$ which preserves the operations $\bigvee, \bigwedge, \Rightarrow, j$ and 0. We say that \mathcal{H}_2 is a homomorphic core image of \mathcal{H}_1 if $j_2\mathcal{H}_2 = h(j_1\mathcal{H}_1)$.

Theorem

An ncHA is typical iff it is a homomorphic core image of a Kripkean ncHA.

Corollary

The logic of typical algebraic models coincide with the logic of regular Kripkean models (i.e with intuitionistic inquistive logic).

Future work

deductive characterization of the logic of information types

- algebraic properties of typical algebras
- connections to type theory
- expansion to the substructural setting
- philosophical aspects and applications