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The goals of the talk

I to explain the notion of information type
I to show that information types can be combined by logical

operators
I to show that there are logical relations among information

types
I to develop an algebraic semantics for the logic of information

types
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Inquisitive semantics



Questions are types of propositions (information types)

Ciardelli, I. (2018) Questions as information types



Information tokens vs. information types

Possible states:

© 4 4 ©
© © 4 4

Information tokens:
a is a circle, b is a triangle, a is red, . . .

Information types:
shape of a, shape of b, colour of a, colour of b

I a is a triangle �C b is red
I a is a circle 2C b is red
I colour of b, shape of a �C colour of a
I colour of b, shape of a 2C shape of b
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Combining information types: conjunction

type:
I the shape of a and the colour of b

its tokens:
I a is a circle and b is blue
I a is a triangle and b is red

...



Combining information types: disjunction

type:
I the shape of a or the colour of b

its tokens:
I a is a circle
I b is blue

...



Combining information types: implication

type:
I type of dependencies of the shape of a on the colour of b

its tokens:
I if b is red then a is a circle, if b is blue then a is a triangle, if b

is green . . .
I if b is green then a is a triangle, if b has any other colour then

a is a circle
...



Combining information types: implication

Tokens of type ϕ:
I Kateřina got 0 points, . . ., Kateřina got 100 points

Tokens of type ψ:
I Kateřina passed the exam, Kateřina didn’t pass the exam

Tokens of type ϕ→ ψ:
I If Kateřina got > 60 points then she passed the exam and if

she got ≤ 60 points she did not pass
I If Kateřina got > 50 points then she passed the exam and if

she got ≤ 50 points she did not pass
...



Quantifiers: all

type:
I the colour of all objects

its tokens:
I a is red and b is blue and c is . . .
I all objects are green

...



Quantifiers: some

type:
I the colour of some objects

its tokens:
I a is red
I b is blue

...



From types to propositions

Given a type ϕ we can form the following proposition:
I some token of the the type ϕ holds (◦ϕ)



First-order language

The language of types:

ϕ,ψ ::= ⊥ | Pt1 . . . tn | ϕ ∧ ψ | ϕ→ ψ | ∀xϕ | ψ > ϕ | ∃∃xϕ | ◦ϕ

The sublanguage of tokens:

α, β ::= ⊥ | Pt1 . . . tn | α ∧ β | α→ β | ∀xα | ◦ϕ

Defined symbols:

¬ϕ =def ϕ→ ⊥, ϕ↔ ψ =def (ϕ→ ψ) ∧ (ψ → ϕ)

ϕ ∨ ψ =def ◦(ϕ

>

ψ), ∃xϕ =def ◦∃∃xϕ



In inquisitive logic:
I Pa

>

Qa represents the question whether a has the property P
or the property Q

I ◦(Pa > Qa) would be the presupposition of the question, i.e.
the proposition that a has the property P or the property Q

I ∃∃xPx represents the question what is an object that has the
property P

I ◦∃∃xPx would be the presupposition of the question, i.e. the
proposition that there is an object that has the property P



The reformulation in terms of types:
I Pa

>

Qa represents the type with tokens Pa, Pb,
I ◦(Pa > Qa) is the statement that some token of the type

Pa

>

Qa holds: i.e. the proposition Pa ∨ Qa

I ∃∃xPx is the type of instances of Px
I ◦∃∃xPx is the statement that some token of the type ∃∃xPx

holds: i.e. the proposition ∃xPx



Some formalizations

I the shape of a: ∃∃xSxa
I the shape of a and the colour of b: ∃∃xSxa ∧ ∃∃yCyb
I the shape of a or the colour of b: ∃∃xSxa > ∃∃yCyb
I the colour of all objects: ∀x∃∃yCyx
I the colour of some objects: ∃∃x∃∃yCyx
I dependence of the shape of a on the colour of b:
∃∃yCyb → ∃∃xSxa

I the colour of a is dependent on the colour of b:
◦(∃∃yCyb → ∃∃xSxa)



Complete Heyting algebra

A complete Heyting algebra (cHA) is any structure

H = 〈H,
∨
,
∧
,⇒, 0〉,

where
I 〈H,

∨
,
∧
〉 is a complete lattice,

I 0 is its least element
I ⇒ is a relative pseudocomplement, i.e. a binary operation on

H satisfying the residuation condition:

u ≤ s ⇒ t iff u ∧ s ≤ t.



Complete Heyting algebras correspond to “frames” of
point-free topology

Complete Heyting algebras coincide with complete lattices
satisfying the following infinitary distributive law:

s ∧
∨
i∈I

ti =
∨
i∈I

(s ∧ ti ).

In every such lattice, relative pseudocomplement satisfying the
residuation condition can be defined as follows:

s ⇒ t =
∨
{u ∈ H | s ∧ u ≤ t}.



◦ is a lax modality (Fairtlough 1997)

(a) � ϕ→ ◦ϕ
(b) � ◦◦ϕ↔ ◦ϕ
(c) � ◦(ϕ ∧ ψ)↔ (◦ϕ ∧ ◦ψ)
(d) � ◦⊥ ↔ ⊥



Nucleus (the algebraic counterpart of the lax modality)

A nucleus on a Heyting algebra H is a function j : H → H such
that for each s, t ∈ H:

(a) s ≤ j(s),
(b) j(j(s)) = j(s),
(c) j(s ∧ t) = j(s) ∧ j(t).

(every nucleus is a closure operator)

A nucleus is dense if j(0) = 0.



Nuclear cHAs

A nuclear cHA (ncHA) is a cHA equipped with a nucleus.

I If H is an ncHA, the set jH = {j(s) | s ∈ H} of all its fixed
points will be called the core of H.

I The core elements will be called propositions.



Kripkean ncHAs

Let H = 〈H,
∨
,
∧
,⇒, 0〉 be a cHA. Take the structure

Dw(H) = 〈DwH,
⋃
,
⋂
,V, {0}, dj〉

where
I DwH is the set of all non-empty downsets of H,
I

⋃
and

⋂
are (infinitary) union and intersection,

I V is defined as follows:

X V Y =
⋃
{Z ∈ DwH | Z ∩ X ⊆ Y },

I and dj as follows:
dj(X ) = ↓

∨
X .

We will call these structures Kripkean ncHAs.



Propositions

Propositions are closed under implication, conjunction and universal
quantification. Moreover, contradiction is a proposition.

Claim
The core of any ncHA is closed under

∧
and ⇒. In dense ncHAs,

the core contains 0.



Propositions form an cHA

If H = 〈H,
∨
,
∧
,⇒, 0, j〉 is a dense ncHA, we can define the

structure
jH = 〈jH,

∨
j ,
∧
,⇒, 0〉

where
I

∧
,⇒, 0 are taken form H (restricted to the core),

I and
∨j X = j(

∨
X ), for all X ⊆ H.

Claim
jH is a cHA.



First-order frames

I by a first-order algebraic frame we will understand a pair
F = 〈H,D〉, where H is an ncHA and D is a non-empty set
(the domain of quantification).

I a valuation in F is defined as a function V which assigns to
any n-ary predicate P a function V (P) : Dn → H

I we say that a valuation V is informative, if for any n-ary
predicate P we have V (P) : Dn → jH



First-order models

I a first-order algebraic model is an algebraic frame equipped
with a valuation

I a regular algebraic model is an algebraic model in which the
valuation is informative.

I a Kripkean algebraic model is a regular algebraic model based
on a Kripkean ncHA.



Evaluation

An evaluation (asignment) in U is a function that assigns to each
variable of the language an element of D. If e is an evaluation, x a
variable, and a ∈ D, then e(a/x) is the evaluation that assigns a to
x and e(y) to any other variable y . For any term t, V e(t) is
identical with V (t) if t is a name, and with e(t) if t is a variable.



Algebraic value of a formula in a ncHA

I |⊥|Ne = 0,

I |Pt1 . . . tn|Ne = V (P)(V e(t1), . . . ,V
e(tn)),

I |ϕ ∧ ψ|Ne = |ϕ|Ne ∧ |ψ|Ne ,

I |ϕ→ ψ|Ne = |ϕ|Ne ⇒ |ψ|Ne ,

I |∀xϕ|Ne =
∧

a∈D |ϕ|Ne(a/x),

I |◦ϕ|Ne = j(|ϕ|Ne )

I |ϕ > ψ|Ne = |ϕ|Ne ∨ |ψ|Ne ,

I |∃∃xϕ|Ne =
∨

a∈D |ϕ|Ne(a/x).



Validity

I an L-formula ϕ is e-valid in N , if |ϕ|Ne = 1
I ϕ is valid in N if for every evaluation e in N , ϕ is e-valid in N
I ϕ is valid in an algebraic frame if it is valid in every algebraic

model based on that frame.



Logics

I the logic of all algebraic models is first-order lax logic
I the logic of all regular algebraic models is first-order lax logic

plus the following axiom:

◦α→ α, for elementary formulas

I the logic of all Kripkean models is first-order intuitionistic
inquisitive logic validating:

(α→ (ψ

>

χ))→ ((α→ ψ)

>

(α→ χ))

(α→ ∃∃xψ)→ ∃∃x(α→ ψ), if x /∈ FV (α)



Representing functions

Let X ,Y ⊆ jH and f : X → Y . Let

sf =
∧
t∈X

(t ⇒ f (t))

The element sf represents the function f in H.



Representation of types

Te(Pt1 . . . tn) = {|Pt1 . . . tn|e}, Te(⊥) = {0},

Te(ϕ ∧ ψ) = {s ∧ u | s ∈ Te(ϕ), u ∈ Te(ψ)},

Te(ϕ→ ψ) = {sf | f : Te(ϕ)→ Te(ψ)},

Te(∀xϕ) = {
∧

a∈D f (a) | f ∈
∏

a∈D Te(a/x)(ϕ)},

Te(◦ϕ) = {j(
∨
Te(ϕ))},

Te(ϕ

>

ψ) = Te(ϕ) ∪ Te(ψ),

Te(∃∃xϕ) =
⋃
{Te(a/x)(ϕ) | a ∈ U}.

One can observe that for any formula ϕ, T N
e(a/x)(ϕ) is a set of core

elements (i.e. declarative propositions) in N



Typical ncHAs

Let H = 〈H,
∨
,
∧
,⇒, 0, j〉 be an ncHA. We say that H is typical if

j is dense and the following two conditions are satisfied for every
s ∈ H and any collection of indexed elements ti , uik ∈ H, where
i ∈ I and k ∈ K for some index sets I ,K :

(a) j(s)⇒
∨

i∈I ti =
∨

i∈I (j(s)⇒ ti ),

(b)
∧

i∈I
∨

k∈K j(uik) =
∨

f :I→K

∧
i∈I j(uif (i)).

An algebraic frame (model) is called typical if it is based on a
typical ncHA.



Arbitrary elements behave as types of the core elements

Theorem
Let N = 〈H,U,V 〉 be a regular algebraic model, e an evaluation in
U, and ϕ an L-formula. If N is typical then

|ϕ|Ne =
∨
T N
e (ϕ).



A connection between typical and Kripkean ncHAs

Definition
Let H1, H2 be ncHAs. A homomorphism from H1 to H2 is a
function h : H1 → H2 which preserves the operations

∨
,
∧
,⇒, j

and 0. We say that H2 is a homomorphic core image of H1 if
j2H2 = h(j1H1).

Theorem
An ncHA is typical iff it is a homomorphic core image of
a Kripkean ncHA.

Corollary
The logic of typical algebraic models coincide with the logic of
regular Kripkean models (i.e with intuitionistic inquistive logic).



Future work

I deductive characterization of the logic of information types
I algebraic properties of typical algebras
I connections to type theory
I expansion to the substructural setting
I philosophical aspects and applications


