

A Game-Theoretic Approach for Security Control Selection

Dylan Leveille, Jason Jaskolka

Department of Systems and Computer Engineering Carleton University, Ottawa, ON, Canada

dylan.leveille@carleton.ca,jason.jaskolka@carleton.ca

♥ @CyberSEA_Lab

June 20, 2024

Story Proposed Solution

Story

Story

Story (Continued) — Security Control Catalogues

ITSG-33

3.2	FAMILY: AWARENESS AND TRAINING	4′
	AT-1 SECURITY AWARENESS AND TRAINING POLICY AND PROCEDURES	4
	AT-2 SECURITY AWARENESS	
	AT-3 ROLE BASED SECURITY TRAINING	42
	AT-4 SECURITY TRAINING RECORDS	
	AT-5 CONTACTS WITH SECURITY GROUPS AND ASSOCIATIONS	
3.3	FAMILY: AUDIT AND ACCOUNTABILITY	
	AU-1 AUDIT AND ACCOUNTABILITY POLICY AND PROCEDURES	45
	AU-2 AUDITABLE EVENTS	4
	AU-3 CONTENT OF AUDIT RECORDS	46
	AU-4 AUDIT STORAGE CAPACITY	
	AU-5 RESPONSE TO AUDIT PROCESSING FAILURES	
	AU-6 AUDIT REVIEW, ANALYSIS, AND REPORTING.	
	AU-7 AUDIT REDUCTION AND REPORT GENERATION	5
	AU-8 TIME STAMPS	
	AU-9 PROTECTION OF AUDIT INFORMATION.	
	AU-10 NON-REPUDIATION	
	AU-11 AUDIT RECORD RETENTION	
	AU-12 AUDIT GENERATION	
	AU-13 MONITORING FOR INFORMATION DISCLOSURE	
	AU-14 SESSION AUDIT	
	AU-15 ALTERNATE AUDIT CAPABILITY	
	AU-16 CROSS-ORGANIZATIONAL AUDITING	
3.4	FAMILY: SECURITY ASSESSMENT AND AUTHORIZATION	60
	CA-1 SECURITY ASSESSMENT AND AUTHORIZATION POLICIES AND	
	PROCEDURES	60
	CA-2 SECURITY ASSESSMENTS	60
	CA-3 INFORMATION SYSTEM CONNECTIONS	63
	CA-4 SECURITY CERTIFICATION	64

NIST SP 800-53

AC-7	Unsuccessful Logon Attempts
AC-7(1)	AUTOMATIC ACCOUNT LOCK
AC-7(2)	PURGE OR WIPE MOBILE DEVICE
AC-7(3)	BIOMETRIC ATTEMPT LIMITING
AC-7(4)	USE OF ALTERNATE AUTHENTICATION FACTOR
AC-8	System Use Notification
AC-9	Previous Logon Notification
AC-9(1)	UNSUCCESSFUL LOGONS
AC-9(2)	SUCCESSFUL AND UNSUCCESSFUL LOGONS
AC-9(3)	NOTIFICATION OF ACCOUNT CHANGES
AC-9(4)	ADDITIONAL LOGON INFORMATION
AC-10	Concurrent Session Control
AC-11	Device Lock
AC-11(1)	PATTERN-HIDING DISPLAYS
AC-12	Session Termination
AC-12(1)	USER-INITIATED LOGOUTS
AC-12(2)	TERMINATION MESSAGE
AC-12(3)	TIMEOUT WARNING MESSAGE
AC-13	Supervision and Review-Access Control
AC-14	Permitted Actions without Identification or Authentication
AC-14(1)	NECESSARY USES
AC-15	Automated Marking
AC-16	Security and Privacy Attributes

Story Proposed Solution

Story (Continued) — Main Takeaways

Key Challenges

Each System is unique and has different security needs

Threats vary greatly from system to system, and their environment (*Example:* Military vs. Manufacturing)

Many security controls exist in a given control catalogue

Not every control can be selected (dependencies, cost)

Story Proposed Solution

Story (Continued) — Main Takeaways

Key Challenges

Each System is unique and has different security needs

Threats vary greatly from system to system, and their environment (*Example:* Military vs. Manufacturing)

Many security controls exist in a given control catalogue

Not every control can be selected (dependencies, cost)

There is a human element to control selection!

Story Proposed Solution

Proposed Solution

Proposed Solution

To develop an approach that will assist with control selection while accounting for the challenges mentioned above.

To focus on the human-centric nature of this problem.

Story Proposed Solution

Proposed Solution

Proposed Solution

To develop an approach that will assist with control selection while accounting for the challenges mentioned above.

To focus on the human-centric nature of this problem.

Game theory is perfect for this!

Overview Building the Game Pieces Playing the Game

Illustrative Example – Firebird

Overview Building the Game Pieces Playing the Game

Step 1: Identify Applicable Atomic Controls

Goal

Identify a list of applicable security controls (*atomic controls*) for a given system from a security control catalogue (common practice).

Required Inputs

Control Catalogue

Mandatory Controls

Threat Model

Overview Building the Game Pieces Playing the Game

Step 1: Identify Applicable Atomic Controls – Firebird

Required Inputs

Control Catalogue: ITSG-33

Mandatory Controls: SI-10: Input Validation

Threat Model: next slide

Overview Building the Game Pieces Playing the Game

Step 1: Identify Applicable Atomic Controls – Firebird

Table: Threat model and applicable atomic controls for Firebird

Assets	Threats	Security Objectives Violated	Applicable Atomic Controls
User Interface	 Commands received from unknown sources 	ConfidentialityIntegrity	AC-4: Information Flow Enforcement
	Improper/malicious commands entered	ConfidentialityIntegrity	• SI-10: Input Validation
	Employee freely accesses and changes features provided in the interface	ConfidentialityIntegrity	 AC-3: Access Enforcement AC-6: Least Privilege
Database	 SQL injection from an improper analyst input changes or retrieves data 	ConfidentialityIntegrity	AC-4: Information Flow Enforcement SI-10: Input Validation
	 Employee freely inspects data in the database 	Confidentiality	• AC-6: Least Privilege

Overview Building the Game Pieces Playing the Game

Step 2: Assign Effectiveness to Atomic Controls

Goal

Assign an effectiveness to each atomic control gathered in Step 1.

Required Inputs

Threat Model

Atomic Controls (Step 1)

Overview Building the Game Pieces Playing the Game

Step 2: Assign Effectiveness to Atomic Controls – Firebird

Table: Atomic payoff matrix for Firebird

		Database	User Interface			
	C I A C				1	A
SI-10: Input Validation	Medium	Very High	None	Medium	High	None
AC-3: Access Enforcement	None	None	None	Medium	High	None
AC-4: Information Flow Enforcement	Medium	Medium	None	Medium	Low	None
AC-6: Least Privilege	High	None	None	Medium	Low	None

Overview Building the Game Pieces Playing the Game

Step 2: Assign Effectiveness to Atomic Controls – Firebird

Table: Atomic payoff matrix for Firebird

	Database			User Interface		
	C I A C					A
SI-10: Input Validation	Medium	Very High	None	Medium	High	None
AC-3: Access Enforcement	None	None	None	Medium	High	None
AC-4: Information Flow Enforcement	Medium	Medium	None	Medium	Low	None
AC-6: Least Privilege	High	None	None	Medium	Low	None

This is not the game matrix!

Overview Building the Game Pieces Playing the Game

Step 3: Assign Cost to Atomic Controls

Goal

Assign a cost to each atomic control gathered in Step 1.

Required Inputs

Atomic Controls (Step 1)

Overview Building the Game Pieces Playing the Game

Step 3: Assign Cost to Atomic Controls - Firebird

Table: Atomic control costs for Firebird

Control	Cost
SI-10: Input Validation	5
AC-3: Access Enforcement	6
AC-4: Information Flow Enforcement	4
AC-6: Least Privilege	3

Overview Building the Game Pieces Playing the Game

Step 4: Specify and Generate Valid Control Combinations

Goal

Generate all valid security control combinations for the game using an algebraic specification.

Required Inputs

Mandatory controls

Effectiveness of atomic controls (**Step 2**)

Cost of atomic controls (Step 3)

Overview Building the Game Pieces Playing the Game

Security Control Algebra

Definition

Security Control Algebra – A security control algebra is a commutative idempotent semiring $\mathscr{C} \stackrel{\text{def}}{=} (C, \oplus, \odot, 0, 1)$ where each element of the semiring $c \in C$ is a security control family.

C: Set of every possible security control family (possible combinations of controls)

- $\oplus:$ Operator denoting a choice of two security control families
- $\odot:$ Operator denoting a composition of two security control families

0: Non-implementable security control combination (one that does not exist). Identity with respect to $\oplus.$

1: Empty security control combination (no controls). Identity with respect to $\odot.$

Overview Building the Game Pieces Playing the Game

Step 4: Specify and Generate Valid Control Combinations – *Firebird*

Denoting the security control family as F,

$$F = SI-10 \odot opt[AC-3, AC-4, AC-6]$$
such that $AC-3 \xrightarrow{F} AC-6$

Overview Building the Game Pieces Playing the Game

Step 4: Specify and Generate Valid Control Combinations – *Firebird*

- $F = SI-10 \odot opt[AC-3, AC-4, AC-6]$
- $F = SI-10 \oplus SI-10 AC-3 \oplus SI-10 AC-4 \oplus SI-10 AC-6 \oplus SI-10 AC-3 AC-4 \oplus SI-10 AC-3 AC-6 \oplus SI-10 AC-4 AC-6 \oplus SI-10 AC-3 AC-4 AC-6$

Overview Building the Game Pieces Playing the Game

Step 4: Specify and Generate Valid Control Combinations – *Firebird*

Budget = 15

Table: Security control combination costs for Firebird

Security Control Combination	Cost
SI-10	5
SI-10 AC-4	9
SI-10 AC-6	8
SI-10 AC-3 AC-6	14
SI-10 AC-4 AC-6	12
SI-10 AC-3 AC-4 AC-6	18

SI-10 AC-3 AC-4 does not respect dependencies, and therefore not present

Overview Building the Game Pieces Playing the Game

Step 5: Construct the Game Matrix

Goal

Generate the game matrix

Required Inputs

Valid control combinations (Step 4)

Overview Building the Game Pieces Playing the Game

Effectiveness Definition

Definition (Effectiveness of a Security Control Combination)

$$Eff(1) = 0$$

$$Eff(a) = E(a) \text{ if } a \text{ is atomic}$$

$$Eff(a \odot b) = 1 - (1 - Eff(a))(1 - Eff(b))$$

Overview Building the Game Pieces Playing the Game

Step 5: Construct the Game Matrix – *Firebird*

Table: Game matrix for Firebird

	Database			User Interface		
	С	C I A			1	A
SI-10	0.5	0.9	0.0	0.5	0.8	0.0
SI-10 AC-4	0.75	0.95	0.0	0.75	0.84	0.0
SI-10 AC-6	0.9	0.9	0.0	0.75	0.84	0.0
SI-10 AC-3 AC-6	0.9	0.9	0.0	0.875	0.968	0.0
SI-10 AC-4 AC-6	0.95	0.95	0.0	0.875	0.872	0.0

This is a one-shot zero-sum game!

Overview Building the Game Pieces Playing the Game

Step 6: Play the Game

Goal

Play the game based on expected attacker profiles.

Required Inputs

Game matrix (Step 5)

Overview Building the Game Pieces Playing the Game

Attacker Profiles

Definition (Attacker Profile)

Ordered sets of security objectives expected to be targeted by an attacker.

Overview Building the Game Pieces Playing the Game

Step 6: Play the Game – *Firebird*

Attacker Profile: attacker expected to equally target confidentiality of the interface and confidentiality of the database

	Database			User Interface		
	С	1	A	С	1	A
SI-10	0.5	0.9	0.0	0.5	0.8	0.0
SI-10 AC-4	0.75	0.95	0.0	0.75	0.84	0.0
SI-10 AC-6	0.9	0.9	0.0	0.75	0.84	0.0
SI-10 AC-3 AC-6	0.9	0.9	0.0	0.875	0.968	0.0
SI-10 AC-4 AC-6	0.95	0.95	0.0	0.875	0.872	0.0

SI-10 AC-4 AC-6 is the suggested strategy

Overview Building the Game Pieces Playing the Game

Step 6: Play the Game – *Firebird*

Attacker Profile: attacker expected to target (1) the confidentiality of the interface followed by (2) the integrity of the interface

	Database			User Interface		
	С	C I A			Ι	A
SI-10	0.5	0.9	0.0	0.5	0.8	0.0
SI-10 AC-4	0.75	0.95	0.0	0.75	0.84	0.0
SI-10 AC-6	0.9	0.9	0.0	0.75	0.84	0.0
SI-10 AC-3 AC-6	0.9	0.9	0.0	0.875	0.968	0.0
SI-10 AC-4 AC-6	0.95	0.95	0.0	0.875	0.872	0.0

SI-10 AC-3 AC-6 is the suggested strategy

Discussion and Conclusion

Discussion and Conclusion

Capturing Human Elements in Control Selection

Viewing control selection as a game captures the opposing dynamics of the attacker and analyst.

Reduction of Assumptions

Practical applications of game theory typically require numerous assumptions.

Limitation: Numerous possible Control Combinations

With N optional controls, there are 2^N possible combinations for the game.

Discussion and Conclusion

Thank You

CyberSEA Research Lab

Carleton University

Dylan Leveille dylan.leveille@carleton.ca,jason. jaskolka@carleton.ca

@CyberSEA_Lab