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Motivation

Graphics processing units GPUs are:

• incredibly powerful devices,

• made for regular problems

(i.e. matrix multiplication),

• very parallel,

• hard to program irregular problems.

Goal:

Utilize the power of the GPU for

generic computing tasks.

Fig. Computational power of GPUs.
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Outline

1. Motivation

2. Parallel complexity

3. DFA minimization

4. Three ways to compute minimal DFA

• Partition refinement

• Sorting

• Transitive closure

• Bonus PR with partial transitive closure.

5. Evaluation
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Computational model – PRAM

The Parallel Random Access Machine (PRAM) is an extension on the RAM.

PRAM

• Unbounded collection of processors P0,P1,P2, . . .

• Unbounded collection of common memory cells the processors can access

• Each processor Pi has access to its index i

• Processors run the same program synchronously

A PRAM program contains a function P : N → N defining how many processes are

started, based on the size of the input.
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Computational model – Complexity

A PRAM program comes with two complexity measures:

• Time – the number of sequential steps the PRAM takes,

• Work – the total work performed.

Work is equal to P ∗ T where P is the number of processors, and T the time.

Nick’s class (NC)
Problems that can be solved in O(log in) time with O(nc) processors for some i , c ∈ N.

Open question: P
?
= NC

P ̸= NC =⇒ there are some inherently sequential P-complete problems.
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DFA minimization

Deterministic Finite Automata
A DFA is a five tuple A = (Q,Σ, δ,F , q0)

qestart qo

b

a

b

a

DFA minimization
Given DFAs A compute a minimal automaton A′ such that L(A) = L(A)′.

1. Remove not reachable states.

2. Merge equivalent states,

For DFAs equivalence corresponds to bisimilarity.
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Complexity scenario

Computing bisimilarity quotient

- For non-deterministic systems (LTSs) P-complete.

- For DFAs in NC. ✓

Sequential setting
For DFAs usually computed with [Hopcroft 1971] O(n log n).

For LTSs a similar approach is used [Paige& Tarjan 1987].

Parallel setting
Parallel algorithms for these problem often also partition refinement (PR).

Lower bound – parallel
Parallel partition refinement algorithms are Ω(n) [Groote, M. & De Vink 2023].

Why use partition refinement for DFAs!?
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Partition refinement

Maintain a partition of states which are different π = {F ,Q \ F}

Base case:

q0 q1

Refinement: π = {{q0, q1}, {p1}.{p2}} 7→ π′ = {{q0}, {q1}, {p1}.{p2}}

q0 q1

p1 p2

a a
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Algorithm I – Partition refinement naivePR1

Step 0: Initialize

1: block :: Array[n] of type Q

2: new leader :: Array[n] of type Q

3: Select initial leader states qf ∈ F and qn ∈ Q \ F
4: do in parallel for q ∈ Q

5: block[q] := (q ∈ F ? qf : qn)

6: stable := false

Step 1: In parallel compare to leader

1: do in parallel for q, a ∈ Q × Σ

2: if block[δ(q, a)] ̸= block[δ(block[q], a)] then

3: new leader [block[q]] := q

Step 2: Split states from leader

1: do in parallel for q, a ∈ Q × Σ

2: if block[δ(q, a)] ̸= block[δ(block[q], a)] then

3: block[q] := new leader [block[q]]

s1

s4

s2

s5

s3

a, b a

b

b

a, b a, b

a

Bs1

Bs4

Step 0: Initialize leaders Bs4 , Bs1
1Based on [M. , Groote, van der Haak, Hijma& Wijs 2021]
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2: new leader :: Array[n] of type Q
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Step 1: In parallel compare to leader

1: do in parallel for q, a ∈ Q × Σ

2: if block[δ(q, a)] ̸= block[δ(block[q], a)] then

3: new leader [block[q]] := q

Step 2: Split states from leader

1: do in parallel for q, a ∈ Q × Σ

2: if block[δ(q, a)] ̸= block[δ(block[q], a)] then

3: block[q] := new leader [block[q]]

s1

s4

s2

s5

s3

a, b a

b

b

a, b a, b

a

Bs4

Bs1 Bs2

Step 2: Split into new blocks.
1Based on [M. , Groote, van der Haak, Hijma& Wijs 2021]
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Algorithm II – Partition refinement SortPR2

Idea: Compare all different target blocks (signatures).

Data structure s1 s2 s3 s4 s5

block B0 B0 B0 B1 B1

blocka B1 B1 B0 B1 B1

blockb B1 B0 B1 B1 B1

Sorted Data s3 s2 s1 s4 s5

block B0 B0 B0 B1 B1

blocka B0 B1 B1 B1 B1

blockb B1 B0 B1 B1 B1

s1

s4

s2

s5

s3

a, b a

b

b

a, b a, b

a

B0

B1

2Based on [Ravikumar & Xiong 1996]
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Partition refinement – Parallel worst case

q0start q1 q2 q3 q4 q5
a a a a a

a
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Parallel reachability

1: Reach :: Array[n][n] of type B
2: do in parallel for s, t ∈ V

3: if (s, t) ∈ E then

4: Reach[s][t] := true

5: while ¬stable do

6: do in parallel for s, t, u ∈ V

7: if Reach[s][t]&Reach[t][u] then

8: Reach[s][u] := true

12 / 25



Parallel reachability

1: Reach :: Array[n][n] of type B
2: do in parallel for s, t ∈ V

3: if (s, t) ∈ E then

4: Reach[s][t] := true

5: while ¬stable do

6: do in parallel for s, t, u ∈ V

7: if Reach[s][t]&Reach[t][u] then

8: Reach[s][u] := true

12 / 25



Parallel reachability

1: Reach :: Array[n][n] of type B
2: do in parallel for s, t ∈ V

3: if (s, t) ∈ E then

4: Reach[s][t] := true

5: while ¬stable do

6: do in parallel for s, t, u ∈ V

7: if Reach[s][t]&Reach[t][u] then

8: Reach[s][u] := true

12 / 25



Parallel reachability

1: Reach :: Array[n][n] of type B
2: do in parallel for s, t ∈ V

3: if (s, t) ∈ E then

4: Reach[s][t] := true

5: while ¬stable do

6: do in parallel for s, t, u ∈ V

7: if Reach[s][t]&Reach[t][u] then

8: Reach[s][u] := true

12 / 25



Complexity – overview

deterministic (DFAs) non-deterministic

class NC P-complete

Best parallel run-time O(log2 n) Ω(n)

parallel PR time n n

Sequential work O(n log n) O(m log n)
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Algorithm III – Transitive Closure trans

DFA in NC – [Cho & Huynh 1992 IPL]
DFA minimization is in NC by doing logarithmic transitive closure.

1. Construct a graph V = Q × Q,

and E = {((q, p), (q′, p′)) | q →a q′ and p →a p′ for some a ∈ Σ}.
2. Label all nodes (q, q′), (q′, q) with ⊥ if

q ∈ F and q′ ̸∈ F

3. Compute parallel reachability,

4. Now q ̸= q′ ⇐⇒ (q, q′) → ⊥.
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Algorithm III – trans

q0 p0

q2q1 p2p1

a ab b

q0, p0

q1, p1q2, p2

Note: The graph will have size n2.
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Overview

naivePR

✓ O(1) time iteration,

✓ Best time complexity,

× Split block in two,

× Not sub-linear.

sortPR

✓ Split blocks in multiple,

✓ Native GPU operation,

× Iteration time,

× slow worse case.

trans

✓ Logarithmic iterations,

× Amount of resources

Memory O(n4),

Processors O(n5).
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Algorithm IV – Partition refinement with preprocessing transPR

New algorithm – transPR
Idea: Build new DFA with more alphabet letters.

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9
a a a a a a a a a

a

a2

a4

a8
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Algorithm IV – transPR

Pro’s and cons

✓ Uses only n log n processors,

✓ Get (partial) transitive closure,

× Only in very specific structures.
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Evaluation

Evaluation
We evaluate on the following

benchmarks

• Fibonacci automata Fibn,

• the Bit splitter Bn, and

• The very large transition

system (VLTSs) benchmarks.

q0 q1

q2

q3

q4q5

q6

q7

a

a

a

a

a

a

a

a
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Evaluation I

Point 1/4: The logarithmic algorithm trans is not feasible (yet).

Name N Iterations Time (ms) Memory(Mb) #threads

Fib4 8 3 0.3 0 589,824

Fib5 13 4 0.7 0 6,230,016

Fib6 21 5 7.8 0 88,510,464

Fib7 34 5 159.9 0 1,620,545,536

Fib8 55 6 3,034.9 10 27,955,840,000

Fib9 89 7 66,846.7 60 498,865,340,416

Fib10 144 t/o t/o 412 8,943,640,510,464
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Evaluation II

Point 2/4: For the Fibonacci automata transPR works great.

Benchmark metrics Times (ms) Iterations

Name N naivePR transPR naivePR transPR

Fib20 17,711 308.8 1.7 17,710 14

Fib21 28,657 494.2 2.4 28,656 25

Fib22 46,368 778.7 4.1 46,367 61

Fib23 75,025 1,241.3 8.0 75,024 101

Fib24 121,393 2,006.7 12.5 121,392 104

Fib25 196,418 3,251.3 18.3 196,417 138

Fib26 317,811 5,277.8 49.8 317,810 102

Fib27 514,229 8,607.7 96.1 514,228 268

Fib28 832,040 22,723.0 178.4 832,039 299

Fib29 1,346,269 59,510.8 726.9 1,346,268 755

Fib30 2,178,309 141,601.0 1,109.3 2,178,308 914
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Evaluation III

Point 3/4: In worst case scenarios naivePR works best.

Benchmark metrics Times (ms) Iterations

Name N naivePR sortPR naivePR sortPR

Fib24 121,393 2,006.7 34,793.1 121,392 121,392

Fib25 196,418 3,251.3 64,411.7 196,417 196,417

Fib26 317,811 5,277.8 178,367.4 317,810 317,810

Fib27 514,229 8,607.7 t/o 514,228 t/o

Fib28 832,040 22,723.0 t/o 832,039 t/o

Fib29 1,346,269 59,510.8 t/o 1,346,268 t/o

Fib30 2,178,309 141,601.0 t/o 2,178,308 t/o

B19 524,288 9.6 235.7 18 18

B20 1,048,576 19.3 520.2 19 19

B21 2,097,152 39.8 1,148.6 20 20

B22 4,194,304 82.6 2,538.5 21 21

B23 8,388,608 170.3 5,612.7 22 22

B24 16,777,216 352.6 12,351.8 23 23

B25 33,554,432 737.4 27,092.2 24 24

B26 67,108,864 1,541.5 59,203.8 25 25
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Evaluation IV

Point 4/4: In some (real world) examples in VLTS sortPR works best.

Benchmark metrics Times (ms) Iterations

Name N naivePR sortPR naivePR sortPR

cwi 1 2 4,448 5.4 66.7 308 38

vasy 1112 5290 1,112,491 135.4 386.8 246 4

vasy 157 297 157,605 455.1 1,736.3 1,049 27

vasy 386 1171 355,790 36.9 489.4 58 8

vasy 574 13561 574,058 2,332.2 976.5 2,351 5

vasy 6120 11031 3,190,785 13,186.6 21,886.0 2,373 21

vasy 65 2621 65,538 2,591.8 38.3 36,575 4

vasy 66 1302 209,791 42,864.9 96.0 179,861 8

vasy 69 520 74,958 7,223.0 124.2 49,723 12

vasy 720 390 87,741 176.0 57.1 2,936 5

vasy 83 325 393,147 162,495.0 1,074.4 173,218 19
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Conclusions

Recap
We studied massive parallel algorithms for DFA minimization on GPUs:

• Depending on the structure of the automaton either:

- naivePR many iterations, few splits per iteration,

- sortPR many new reasons to split blocks.

• Despite complexity bounds, we find partition refinement algorithms work best.

Future work
Close gap in work and time complexity.

• Heuristic or randomized algorithms, e.g.

- Expand pre-processing,

- Reachability.

• Work lowerbounds for logarithmic algorithms.
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Thanks!
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