An Evaluation of Massively Parallel Algorithms for DFA Minimization

GandALF 2024

Jan Martens^{1,2} and Anton Wijs¹

June 19, 2024

j.j.m.martens@liacs.leidenuniv.nl

¹Eindhoven University of Technology

²Leiden Institute of Advanced Computer Science

Graphics processing units GPUs are:

- incredibly powerful devices,
- made for regular problems (i.e. matrix multiplication),
- very parallel,
- hard to program irregular problems.

Fig. Computational power of GPUs.

Graphics processing units GPUs are:

- incredibly powerful devices,
- made for regular problems (i.e. matrix multiplication),
- very parallel,
- hard to program irregular problems.

Goal:

Utilize the power of the GPU for generic computing tasks.

Fig. Computational power of GPUs.

Motivation

Graphics processing units GPUs are:

- incredibly powerful devices,
- made for regular problems (i.e. matrix multiplication),
- very parallel,
- hard to program irregular problems.

Goal:

Utilize the power of the GPU for generic computing tasks.

- 1. Motivation
- 2. Parallel complexity
- 3. DFA minimization
- 4. Three ways to compute minimal DFA
 - Partition refinement
 - Sorting
 - Transitive closure
 - Bonus PR with partial transitive closure.
- 5. Evaluation

The Parallel Random Access Machine (PRAM) is an extension on the RAM.

PRAM

- Unbounded collection of processors P_0, P_1, P_2, \ldots
- Unbounded collection of common memory cells the processors can access
- Each processor P_i has access to its index i
- Processors run the same program synchronously

A PRAM program contains a function $\mathcal{P}:\mathbb{N}\to\mathbb{N}$ defining how many processes are started, based on the size of the input.

A PRAM program comes with two complexity measures:

- Time the number of sequential steps the PRAM takes,
- Work the total work performed.

Work is equal to P * T where P is the number of processors, and T the time.

Nick's class (NC) Problems that can be solved in $\mathcal{O}(\log^i n)$ time with $\mathcal{O}(n^c)$ processors for some $i, c \in \mathbb{N}$.

Open question: $P \stackrel{?}{=} NC$

A PRAM program comes with two complexity measures:

- Time the number of sequential steps the PRAM takes,
- Work the total work performed.

Work is equal to P * T where P is the number of processors, and T the time.

Nick's class (NC) Problems that can be solved in $\mathcal{O}(\log^{i} n)$ time with $\mathcal{O}(n^{c})$ processors for some $i, c \in \mathbb{N}$.

Open question: $P \stackrel{?}{=} NC$

 $P \neq NC \implies$ there are some inherently sequential *P*-complete problems.

DFA minimization

Deterministic Finite Automata A DFA is a five tuple $\mathcal{A} = (Q, \Sigma, \delta, F, q_0)$

DFA minimization

Deterministic Finite Automata A DFA is a five tuple $\mathcal{A} = (Q, \Sigma, \delta, F, q_0)$

DFA minimization

Given DFAs \mathcal{A} compute a minimal automaton \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A})'$.

- 1. Remove not reachable states.
- 2. Merge equivalent states,

DFA minimization

Deterministic Finite Automata A DFA is a five tuple $\mathcal{A} = (Q, \Sigma, \delta, F, q_0)$

DFA minimization

Given DFAs \mathcal{A} compute a minimal automaton \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A})'$.

- 1. Remove not reachable states.
- 2. Merge equivalent states, For DFAs equivalence corresponds to bisimilarity.

Computing bisimilarity quotient

- For non-deterministic systems (LTSs) P-complete.

Parallel setting Parallel algorithms for these problem often also **partition refinement (PR)**.

Computing bisimilarity quotient

- For non-deterministic systems (LTSs) P-complete.
- For DFAs in NC. \checkmark

Sequential setting

For DFAs usually computed with [Hopcroft 1971] $O(n \log n)$. For LTSs a similar approach is used [Paige& Tarjan 1987].

Parallel setting

Parallel algorithms for these problem often also partition refinement (PR).

Computing bisimilarity quotient

- For non-deterministic systems (LTSs) P-complete.
- For DFAs in NC. \checkmark

Sequential setting

For DFAs usually computed with [Hopcroft 1971] $O(n \log n)$. For LTSs a similar approach is used [Paige& Tarjan 1987].

Parallel setting Parallel algorithms for these problem often also **partition refinement (PR)**.

Lower bound – parallel Parallel partition refinement algorithms are $\Omega(n)$ [Groote, M. & De Vink 2023].

Computing bisimilarity quotient

- For non-deterministic systems (LTSs) P-complete.
- For DFAs in Sequential setti For DFAs usually For LTSs a simila Why use partition refinement for DFAs!?

Parallel setting Parallel algorithms for these problem often also partition refinement (PR).

Lower bound – parallel Parallel partition refinement algorithms are $\Omega(n)$ [Groote, M. & De Vink 2023].

Partition refinement

Maintain a partition of states which are different $\pi = \{F, Q \setminus F\}$

Base case:

Partition refinement

Maintain a partition of states which are different $\pi = \{F, Q \setminus F\}$

Base case:

Refinement: $\pi = \{\{q_0, q_1\}, \{p_1\}, \{p_2\}\} \mapsto \pi' = \{\{q_0\}, \{q_1\}, \{p_1\}, \{p_2\}\}$

Partition refinement

Maintain a partition of states which are different $\pi = \{F, Q \setminus F\}$

Base case:

Refinement: $\pi = \{\{q_0, q_1\}, \{p_1\}, \{p_2\}\} \mapsto \pi' = \{\{q_0\}, \{q_1\}, \{p_1\}, \{p_2\}\}$

Step 0: Initialize

- 1: block :: Array[n] of type Q
- 2: new_leader :: Array[n] of type Q
- 3: Select initial leader states $q_f \in F$ and $q_n \in Q \setminus F$
- 4: do in parallel for $q \in Q$
- 5: $block[q] := (q \in F ? q_f : q_n)$

6: *stable* := false

Step 0: Initialize leaders B_{s_4} , B_{s_1}

¹Based on [M. , Groote, van der Haak, Hijma& Wijs 2021]

Step 1: In parallel compare to leader

- 1: do in parallel for $q, a \in Q \times \Sigma$
- 2: if $block[\delta(q, a)] \neq block[\delta(block[q], a)]$ then
- 3: $new_leader[block[q]] := q$

Step 2: Split states from leader

1: do in parallel for $q, a \in Q \times \Sigma$

2: **if**
$$block[\delta(q, a)] \neq block[\delta(block[q], a)]$$
 then

3: $block[q] := new_leader[block[q]]$

¹Based on [M. , Groote, van der Haak, Hijma& Wijs 2021]

Step 1: In parallel compare to leader

1: do in parallel for $q, a \in Q \times \Sigma$

- 2: **if** $block[\delta(q, a)] \neq block[\delta(block[q], a)]$ **then**
- 3: $new_leader[block[q]] := q$

Step 2: Split states from leader

1: do in parallel for $q, a \in Q \times \Sigma$

2: if
$$block[\delta(q, a)] \neq block[\delta(block[q], a)]$$
 then

3: $block[q] := new_leader[block[q]]$

Step 2: Split into new blocks.

¹Based on [M. , Groote, van der Haak, Hijma& Wijs 2021]

Idea: Compare all different target blocks (signatures).

Data structure	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	<i>S</i> 4	<i>S</i> 5
block	B_0	B_0	B_0	B_1	B_1
block _a	B_1	B_1	B_0	B_1	B_1
block _b	B_1	B_0	B_1	B_1	B_1

Data structure	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> 4	<i>S</i> 5	
block	B ₀	B ₀	B ₀	B_1	B_1	- a
blocka	B_1	B_1	B ₀	B_1	B_1	
block _b	B_1	B_0	B_1	B_1	B_1	(s_1) (s_2) (s_3)
	·	·				
Sorted Data	<i>s</i> 3	<i>s</i> ₂	s_1	<i>S</i> 4	<i>S</i> 5	
block	B ₀	B_0	B_0	B_1	B_1	
blocka	B_0	B_1	B_1	B_1	B_1	
blockb	B_1	B_0	B_1	B_1	B_1	$\begin{pmatrix} s_4 \end{pmatrix} \begin{pmatrix} s_5 \end{pmatrix}$
						$() () B_1)$
						a, b a, b

Data structure	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> 4	<i>S</i> 5	
block	B ₀	B ₀	B ₀	B_1	B_1	- a
block _a	B_1	B_1	B ₀	B_1	B_1	b b
block _b	B_1	B ₀	B_1	B_1	B_1	(s_1) (s_2) (s_3)
	· .	·				
Sorted Data	<i>s</i> 3	<i>s</i> ₂	s_1	<i>S</i> 4	<i>S</i> 5	
block	B_0	B_0	B_0	B_1	B_1	
blocka	B_0	B_1	B_1	B_1	B_1	
block _b	B_1	B ₀	B_1	B_1	B_1	$\begin{pmatrix} s_4 \end{pmatrix} \begin{pmatrix} s_5 \end{pmatrix}$
scan	0	1	1	1	0	()
						a b a b

Data structure	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> 4	<i>s</i> ₅	
block	B ₀	B ₀	B ₀	B_1	B_1	a
blocka	B_1	B_1	B ₀	B_1	B_1	
block _b	B_1	B_0	B_1	B_1	B_1	$\left(\begin{array}{c} s_1 \end{array}\right) \left(\begin{array}{c} s_2 \end{array}\right) \left(\begin{array}{c} s_3 \end{array}\right)$
1						
Sorted Data	<i>s</i> 3	<i>s</i> ₂	s_1	<i>S</i> 4	<i>S</i> 5	
block	B_0	B_0	B_0	B_1	B_1	a, b a b
block _a	B_0	B_1	B_1	B_1	B_1	
block _b	B_1	B_0	B_1	B_1	B_1	$\left(\begin{array}{c} s_4 \end{array} \right) \left(\begin{array}{c} s_5 \end{array} \right)$
scan	0	1	1	1	0	B_3
prefixSum	0	1	2	3	3	a b a b

Partition refinement – Parallel worst case

- 1: Reach :: Array[n][n] of type $\mathbb B$
- 2: do in parallel for $s, t \in V$
- 3: **if** $(s, t) \in E$ then
- 4: Reach[s][t] := true
- 5: while ¬stable do
- 6: **do in parallel for** $s, t, u \in V$
- 7: **if** Reach[s][t]&Reach[t][u] **then**
- 8: Reach[s][u] := true

- 1: Reach :: Array[n][n] of type $\mathbb B$
- 2: do in parallel for $s, t \in V$
- 3: **if** $(s, t) \in E$ then
- 4: Reach[s][t] := true
- 5: while ¬stable do
- 6: **do in parallel for** $s, t, u \in V$
- 7: **if** Reach[s][t]&Reach[t][u] **then**
- 8: Reach[s][u] := true

- 1: Reach :: Array[n][n] of type $\mathbb B$
- 2: do in parallel for $s, t \in V$
- 3: **if** $(s, t) \in E$ then
- 4: Reach[s][t] := true
- 5: while ¬stable do
- 6: **do in parallel for** $s, t, u \in V$
- 7: **if** Reach[s][t]&Reach[t][u] **then**
- 8: Reach[s][u] := true

- 1: Reach :: Array[n][n] of type $\mathbb B$
- 2: do in parallel for $s, t \in V$
- 3: **if** $(s, t) \in E$ then
- 4: Reach[s][t] := true
- 5: while ¬stable do
- 6: **do in parallel for** $s, t, u \in V$
- 7: **if** Reach[s][t]&Reach[t][u] **then**
- 8: Reach[s][u] := true

	deterministic (DFAs)	non-deterministic
class	NC	P-complete
Best parallel run-time	$\mathcal{O}(\log^2 n)$	$\Omega(n)$
parallel PR time	п	п
Sequential work	$\mathcal{O}(n \log n)$	$\mathcal{O}(m \log n)$

DFA in NC – [Cho & Huynh 1992 IPL] DFA minimization is in NC by doing logarithmic transitive closure.

1. Construct a graph
$$V = Q \times Q$$
,
and $E = \{((q, p), (q', p')) \mid q \rightarrow^a q' \text{ and } p \rightarrow^a p' \text{ for some } a \in \Sigma\}.$

2. Label all nodes (q,q'),(q',q) with \perp if

$$q\in F$$
 and $q'
ot\in F$

- 3. Compute parallel reachability,
- 4. Now $q \neq q' \iff (q,q') \rightarrow \bot$.

Algorithm III - trans

Note: The graph will have size n^2 .

naivePR

- $\checkmark \mathcal{O}(1)$ time iteration,
- ✓ Best time complexity,
- × Split block in two,
- × Not sub-linear.

sortPR

- $\checkmark\,$ Split blocks in multiple,
- ✓ Native GPU operation,
- × Iteration time,
- \times slow worse case.

trans

- \checkmark Logarithmic iterations,
- × Amount of resources Memory $O(n^4)$, Processors $O(n^5)$.

New algorithm - transPR **Idea:** Build new DFA with more alphabet letters.

Pro's and cons

- ✓ Uses only $n \log n$ processors,
- ✓ Get (partial) transitive closure,
- \times Only in very specific structures.

Evaluation

We evaluate on the following benchmarks

- Fibonacci automata Fib_n,
- the Bit splitter \mathcal{B}_n , and
- The very large transition system (VLTSs) benchmarks.

Evaluation We evaluate on the following benchmarks

- Fibonacci automata Fib_n,
- the Bit splitter \mathcal{B}_n , and
- The very large transition system (VLTSs) benchmarks.

Evaluation

We evaluate on the following benchmarks

- Fibonacci automata Fib_n,
- the Bit splitter \mathcal{B}_n , and
- The very large transition system (VLTSs) benchmarks.

A joint project of CWI/SEN2 and INRIA/VASY

Pictures courtesy of Jan Friso Groote and Frank van Ham (Technical University of Eindhoven)

Point 1/4: The logarithmic algorithm trans is not feasible (yet).

Name	N	Iterations	Time (ms)	Memory(Mb)	#threads
Fib4	8	3	0.3	0	589,824
Fib_5	13	4	0.7	0	6,230,016
Fib ₆	21	5	7.8	0	88,510,464
Fib7	34	5	159.9	0	1,620,545,536
Fib ₈	55	6	3,034.9	10	27,955,840,000
Fib ₉	89	7	66,846.7	60	498,865,340,416
Fib_{10}	144	t/o	t/o	412	8,943,640,510,464

Evaluation II

Point 2/4: For the Fibonacci automata transPR works great.

	Benchmark metrics	Times	(ms)	Iterations		
Name	N	naivePR	transPR	naivePR	transPR	
Fib ₂₀	17,711	308.8	1.7	17,710	14	
Fib_{21}	28,657	494.2	2.4	28,656	25	
Fib ₂₂	46,368	778.7	4.1	46,367	61	
Fib ₂₃	75,025	1,241.3	8.0	75,024	101	
Fib ₂₄	121,393	2,006.7	12.5	121,392	104	
Fib ₂₅	196,418	3,251.3	18.3	196,417	138	
Fib ₂₆	317,811	5,277.8	49.8	317,810	102	
Fib ₂₇	514,229	8,607.7	96.1	514,228	268	
Fib ₂₈	832,040	22,723.0	178.4	832,039	299	
Fib ₂₉	1,346,269	59,510.8	726.9	1,346,268	755	
Fib ₃₀	2,178,309	141,601.0	1,109.3	2,178,308	914	

Evaluation III

Point 3/4: In worst case scenarios naivePR works best.

	Benchmark metrics	Times	s (ms)	Iterations		
Name	Ν	naivePR	sortPR	naivePR	sortPR	
Fib ₂₄	121,393	2,006.7	34,793.1	121,392	121,392	
Fib ₂₅	196,418	3,251.3	64,411.7	196,417	196,417	
Fib ₂₆	317,811	5,277.8	178,367.4	317,810	317,810	
Fib ₂₇	514,229	8,607.7	t/o	514,228	t/o	
Fib ₂₈	832,040	22,723.0	t/o	832,039	t/o	
Fib ₂₉	1,346,269	59,510.8	t/o	1,346,268	t/o	
Fib ₃₀	2,178,309	141,601.0	t/o	2,178,308	t/o	
\mathcal{B}_{19}	524,288	9.6	235.7	18	18	
\mathcal{B}_{20}	1,048,576	19.3	520.2	19	19	
\mathcal{B}_{21}	2,097,152	39.8	1,148.6	20	20	
\mathcal{B}_{22}	4,194,304	82.6	2,538.5	21	21	
\mathcal{B}_{23}	8,388,608	170.3	5,612.7	22	22	

22 / 25

Point 4/4: In some (real world) examples in VLTS sortPR works best.

	Benchmark metrics	Times (ms)		Iterations	
Name	N	naivePR	sortPR	naivePR	sortPR
cwi_1_2	4,448	5.4	66.7	308	38
vasy_1112_5290	1,112,491	135.4	386.8	246	4
vasy_157_297	157,605	455.1	1,736.3	1,049	27
vasy_386_1171	355,790	36.9	489.4	58	8
vasy_574_13561	574,058	2,332.2	976.5	2,351	5
vasy_6120_11031	3,190,785	13,186.6	21,886.0	2,373	21
vasy_65_2621	65,538	2,591.8	38.3	36,575	4
vasy_66_1302	209,791	42,864.9	96.0	179,861	8
vasy_69_520	74,958	7,223.0	124.2	49,723	12
vasy_720_390	87,741	176.0	57.1	2,936	5
vasy_83_325	393,147	162,495.0	1,074.4	173,218	19

Conclusions

Recap

We studied massive parallel algorithms for DFA minimization on GPUs:

- Depending on the structure of the automaton either:
 - naivePR many iterations, few splits per iteration,
 - sortPR many new reasons to split blocks.
- Despite complexity bounds, we find partition refinement algorithms work best.

Conclusions

Recap

We studied massive parallel algorithms for DFA minimization on GPUs:

- Depending on the structure of the automaton either:
 - naivePR many iterations, few splits per iteration,
 - sortPR many new reasons to split blocks.
- Despite complexity bounds, we find partition refinement algorithms work best.

Future work

Close gap in work and time complexity.

- Heuristic or randomized algorithms, e.g.
 - Expand pre-processing,
 - Reachability.
- Work lowerbounds for logarithmic algorithms.

Thanks!