An Evaluation of Massively Parallel Algorithms for DFA Minimization

GandALF 2024

Jan Martens^{1,2} and Anton Wijs¹

June 19, 2024

j.j.m.martens@liacs.leidenuniv.nl

¹Eindhoven University of Technology

²Leiden Institute of Advanced Computer Science

Graphics processing units GPUs are:

- incredibly powerful devices,
- made for regular problems (i.e. matrix multiplication),
- very parallel,
- hard to program irregular problems.

Fig. Computational power of GPUs.

Graphics processing units GPUs are:

- incredibly powerful devices,
- made for regular problems (i.e. matrix multiplication),
- very parallel,
- hard to program irregular problems.

Goal:

Utilize the power of the GPU for generic computing tasks.

Motivation

Graphics processing units GPUs are:

- incredibly powerful devices,
- made for regular problems (i.e. matrix multiplication),
- very parallel,
- hard to program irregular problems.

Goal:

Utilize the power of the GPU for

- 1. Motivation
- 2. Parallel complexity
- 3. DFA minimization
- 4. Three ways to compute minimal DFA
	- Partition refinement
	- Sorting
	- **•** Transitive closure
	- Bonus PR with partial transitive closure.
- 5. Evaluation

The Parallel Random Access Machine (PRAM) is an extension on the RAM.

PRAM

- Unbounded collection of processors P_0, P_1, P_2, \ldots
- Unbounded collection of common memory cells the processors can access
- Each processor P_i has access to its index i
- Processors run the same program synchronously

A PRAM program contains a function $\mathcal{P}: \mathbb{N} \to \mathbb{N}$ defining how many processes are started, based on the size of the input.

A PRAM program comes with two complexity measures:

- Time the number of sequential steps the PRAM takes,
- Work the total work performed.

Work is equal to $P * T$ where P is the number of processors, and T the time.

Nick's class (NC) Problems that can be solved in $\mathcal{O}(\log^i n)$ time with $\mathcal{O}(n^c)$ processors for some $i, c \in \mathbb{N}$.

Open question: $P \stackrel{?}{=} NC$

A PRAM program comes with two complexity measures:

- Time the number of sequential steps the PRAM takes.
- Work the total work performed.

Work is equal to $P * T$ where P is the number of processors, and T the time.

Nick's class (NC) Problems that can be solved in $\mathcal{O}(\log^i n)$ time with $\mathcal{O}(n^c)$ processors for some $i, c \in \mathbb{N}$.

Open question: $P \stackrel{?}{=} NC$

 $P \neq NC \implies$ there are some inherently sequential *P-complete* problems.

DFA minimization

Deterministic Finite Automata A DFA is a five tuple $A = (Q, \Sigma, \delta, F, q_0)$

DFA minimization

Deterministic Finite Automata A DFA is a five tuple $A = (Q, \Sigma, \delta, F, q_0)$

DFA minimization

Given DFAs A compute a minimal automaton A' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A})'$.

- 1. Remove not reachable states.
- 2. Merge equivalent states,

DFA minimization

Deterministic Finite Automata A DFA is a five tuple $A = (Q, \Sigma, \delta, F, q_0)$

DFA minimization

Given DFAs A compute a minimal automaton A' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A})'$.

- 1. Remove not reachable states.
- 2. Merge equivalent states, For DFAs equivalence corresponds to bisimilarity.

Computing bisimilarity quotient

- For non-deterministic systems (LTSs) P-complete.

Parallel setting Parallel algorithms for these problem often also partition refinement (PR).

Computing bisimilarity quotient

- For non-deterministic systems (LTSs) P-complete.
- For DFAs in NC. ✓

Sequential setting

For DFAs usually computed with [Hopcroft 1971] $\mathcal{O}(n \log n)$. For LTSs a similar approach is used [Paige& Tarjan 1987].

Parallel setting

Parallel algorithms for these problem often also **partition refinement (PR)**.

Computing bisimilarity quotient

- For non-deterministic systems (LTSs) P-complete.
- For DFAs in NC. ✓

Sequential setting

For DFAs usually computed with [Hopcroft 1971] $\mathcal{O}(n \log n)$.

For LTSs a similar approach is used [Paige& Tarjan 1987].

Parallel setting Parallel algorithms for these problem often also **partition refinement (PR)**.

Lower bound – parallel Parallel partition refinement algorithms are $\Omega(n)$ [Groote, M. & De Vink 2023].

Computing bisimilarity quotient

- For non-deterministic systems (LTSs) P-complete.
- For DFAs in Sequential setti For DFAs usually Why use partition refinement for DFAs!? For LTSs a similar \overline{P}

Parallel setting

Parallel algorithms for these problem often also **partition refinement (PR)**.

Lower bound – parallel

Parallel partition refinement algorithms are $\Omega(n)$ [Groote, M. & De Vink 2023].

Partition refinement

Maintain a partition of states which are different $\pi = \{F, Q \setminus F\}$

Base case:

Partition refinement

Maintain a partition of states which are different $\pi = \{F, Q \setminus F\}$

Base case:

Refinement: $\pi = \{\{q_0, q_1\}, \{p_1\} \cdot \{p_2\}\} \mapsto \pi' = \{\{q_0\}, \{q_1\}, \{p_1\} \cdot \{p_2\}\}$

Partition refinement

Maintain a partition of states which are different $\pi = \{F, Q \setminus F\}$

Base case:

Refinement: $\pi = \{\{q_0, q_1\}, \{p_1\} \cdot \{p_2\}\} \mapsto \pi' = \{\{q_0\}, \{q_1\}, \{p_1\} \cdot \{p_2\}\}$

Step 0: Initialize

- 1: block :: Array[n] of type Q
- 2: new leader :: Array[n] of type Q
- 3: Select initial leader states $q_f \in F$ and $q_n \in Q \setminus F$
- 4: do in parallel for $q \in Q$
- 5: block[q] := $(q \in F$? q_f : q_n)

6: $stable := false$

Step 0: Initialize leaders B_{s_4} , B_{s_1}

¹Based on [M., Groote, van der Haak, Hijma& Wijs 2021]

Step 1: In parallel compare to leader

- 1: do in parallel for $q, a \in Q \times \Sigma$
- 2: if $block[\delta(q, a)] \neq block[\delta(block[q], a)]$ then
- 3: new leader [block[q]] $:= q$

Step 2: Split states from leader

- 1: do in parallel for $q, a \in Q \times \Sigma$
- 2: if $block[\delta(q, a)] \neq block[\delta(block[q], a)]$ then
- 3: block[q] := new_leader[block[q]]

Step 1: In parallel compare to leader

- 1: do in parallel for $q, a \in Q \times \Sigma$
- 2: if $block[\delta(q, a)] \neq block[\delta(block[q], a)]$ then
- 3: new leader [block[q]] $:= q$

Step 2: Split states from leader

1: do in parallel for $q, a \in Q \times \Sigma$

2: if
$$
block[\delta(q, a)] \neq block[\delta(block[q], a)]
$$
 then

3: block[q] := new leader[block[q]]

Step 2: Split into new blocks.

¹Based on [M., Groote, van der Haak, Hijma& Wijs 2021]

Idea: Compare all different target blocks (signatures).

²Based on [Ravikumar & Xiong 1996]

L.

Partition refinement – Parallel worst case

- 1: Reach :: Array[n][n] of type $\mathbb B$
- 2: do in parallel for $s, t \in V$
- 3: if $(s, t) \in E$ then
- 4: $Reach[s][t] := true$
- 5: while \neg stable do
- 6: do in parallel for $s, t, u \in V$
- 7: **if** $Reach[s][t] \& Read[h[t][u]$ then
- 8: $Reach[s][u] := true$

- 1: Reach :: Array[n][n] of type $\mathbb B$
- 2: do in parallel for $s, t \in V$
- 3: if $(s, t) \in E$ then
- 4: $Reach[s][t] := true$
- 5: while \neg stable do
- 6: do in parallel for $s, t, u \in V$
- 7: **if** $Reach[s][t] \& Read[h[t][u]$ then
- 8: $Reach[s][u] := true$

- 1: Reach :: Array[n][n] of type $\mathbb B$
- 2: do in parallel for $s, t \in V$
- 3: if $(s, t) \in E$ then
- 4: $Reach[s][t] := true$
- 5: while \neg stable do
- 6: do in parallel for $s, t, u \in V$
- 7: **if** $Reach[s][t] & Readh[t][u]$ then
- 8: $Reach[s][u] := true$

- 1: Reach :: Array[n][n] of type $\mathbb B$
- 2: do in parallel for $s, t \in V$
- 3: if $(s, t) \in E$ then
- 4: $Reach[s][t] := true$
- 5: while \neg stable do
- 6: do in parallel for $s, t, u \in V$
- 7: **if** $Reach[s][t] & Readh[t][u]$ then
- 8: $Reach[s][u] := true$

DFA in NC – [Cho & Huynh 1992 IPL] DFA minimization is in NC by doing logarithmic transitive closure.

1. Construct a graph
$$
V = Q \times Q
$$
,
and $E = \{ ((q, p), (q', p')) \mid q \rightarrow^a q' \text{ and } p \rightarrow^a p' \text{ for some } a \in \Sigma \}.$

2. Label all nodes $(q, q'), (q', q)$ with \perp if

$$
q \in F \text{ and } q' \not\in F
$$

- 3. Compute parallel reachability,
- 4. Now $q \neq q' \iff (q, q') \to \bot$.

Note: The graph will have size n^2 .

naivePR

- \checkmark $\mathcal{O}(1)$ time iteration,
- $\sqrt{\ }$ Best time complexity,
- \times Split block in two.
- \times Not sub-linear.

sortPR

- \checkmark Split blocks in multiple,
- ✓ Native GPU operation,
- \times Iteration time,
- \times slow worse case.

trans

- \checkmark Logarithmic iterations,
- \times Amount of resources Memory $O(n^4)$, Processors $\mathcal{O}(n^5)$.

New algorithm - transPR **Idea:** Build new DFA with more alphabet letters.

Pro's and cons

- \checkmark Uses only *n* log *n* processors,
- \checkmark Get (partial) transitive closure,
- \times Only in very specific structures.

Evaluation We evaluate on the following benchmarks

- \bullet Fibonacci automata Fib_n,
- the Bit splitter B_n , and
- The very large transition system (VLTSs) benchmarks.

Evaluation We evaluate on the following benchmarks

- \bullet Fibonacci automata Fib_n,
- the Bit splitter B_n , and
- The very large transition system (VLTSs) benchmarks.

Evaluation

We evaluate on the following benchmarks

- \bullet Fibonacci automata Fib_n,
- the Bit splitter B_n , and
- The very large transition system (VLTSs) benchmarks.

A joint project of CWI/SEN2 and INRIA/VASY

Pictures courtesy of Jan I Friso Groote and Frank van Ham (Technical University of Findhoven)

Point $1/4$: The logarithmic algorithm trans is not feasible (yet).

Evaluation II

Point 2/4: For the Fibonacci automata transPR works great.

Point 3/4: In worst case scenarios naivePR works best.

22 / 25

Point 4/4: In some (real world) examples in VLTS sortPR works best.

Conclusions

Recap

We studied massive parallel algorithms for DFA minimization on GPUs:

- Depending on the structure of the automaton either:
	- naivePR many iterations, few splits per iteration,
	- sortPR many new reasons to split blocks.
- Despite complexity bounds, we find partition refinement algorithms work best.

Conclusions

Recap

We studied massive parallel algorithms for DFA minimization on GPUs:

- Depending on the structure of the automaton either:
	- naivePR many iterations, few splits per iteration,
	- sortPR many new reasons to split blocks.
- Despite complexity bounds, we find partition refinement algorithms work best.

Future work

Close gap in work and time complexity.

- Heuristic or randomized algorithms, e.g.
	- Expand pre-processing,
	- Reachability.
- Work lowerbounds for logarithmic algorithms.

Thanks!