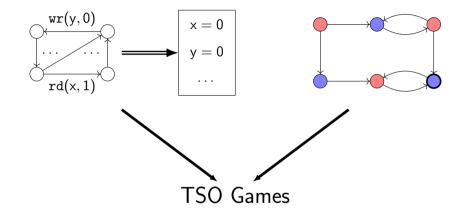
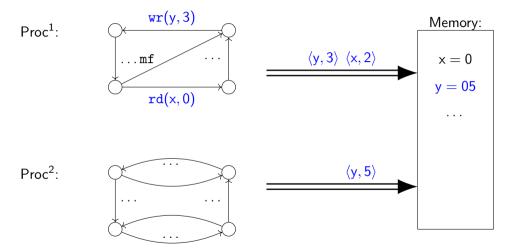


### Reachability and Safety Games under TSO Semantics


SCooL / GandALF 2024 in Reykjavik

Stephan Spengler

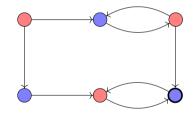
Uppsala University, Sweden


20 June 2024

# **Reachability and Safety Games under TSO semantics**

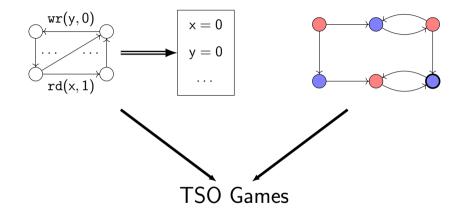






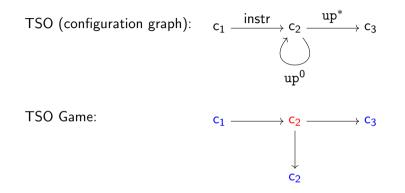






### Games

- ▶ players A and B
- configurations  $C = C_A \cup C_B$
- $\blacktriangleright$  transition relation  $\rightarrow$ 
  - $\blacktriangleright \rightarrow \subseteq (\mathsf{C}_A \times \mathsf{C}_B) \cup (\mathsf{C}_B \times \mathsf{C}_A)$
- ▶ final configuration  $c_F \in C$
- reachability game:
  - A tries to reach C<sub>F</sub>
  - B tries to avoid C<sub>F</sub>
- safety game: reversed roles

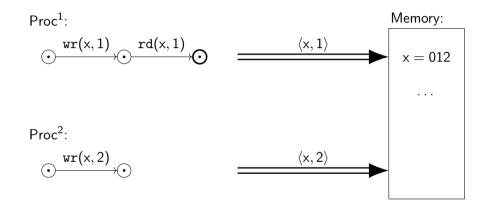





### **TSO Games**

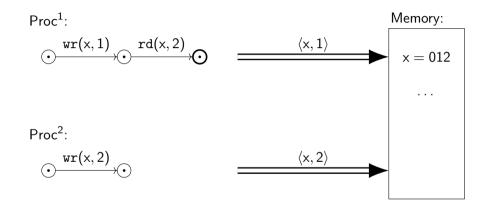





## **TSO Games**



#### process player / update player




# **TSO Games - Reachability Problem**





# **TSO Games - Reachability Problem**





# **TSO Games - Reachability Problem**

- Proc<sup>i</sup> can reach final state without help from other processes: winning strategy for process player: only play in Proc<sup>i</sup>
- Proc<sup>i</sup> can reach final state **only with** help from other processes: winning strategy for update player: do not update any message
- similar for safety games
- analysis reduces to single-process programs (finite behaviour)
- ► complexity: PSPACE-complete



# **TSO Games - Adding Fairness**

Proc<sup>t</sup> can reach final state without help from other processes: winning strategy for process player: only play in Proc<sup>t</sup>

#### **Process Fairness:**

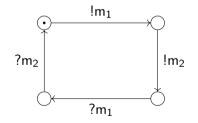
Every enabled process must be executed infinitely often.

Proc<sup>i</sup> can reach final state **only with** help from other processes: winning strategy for update player: do not update any message

### **Update Fairness:**

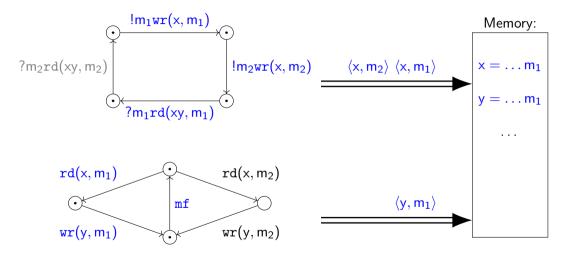
Eventually, every buffer message must be updated to the memory.




## **Update Fairness**

Eventually, every buffer message must be updated to the memory.

safety games? safety games?  $\rightarrow$  reachability games!


Idea: Reduction from Perfect Channel Systems

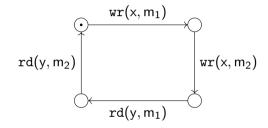
- nondeterministic finite state automata augmented by FIFO *channel*
- use TSO buffer to simulate channel
- reduce PCS reachability (undecidable) to TSO reachability game





**Update Fairness - PCS Reduction** 






# **Update Fairness**

Eventually, every buffer message must be updated to the memory.

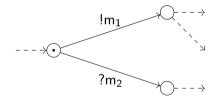
 use TSO buffer to simulate PCS channel

 reduce PCS reachability (undecidable) to TSO reachability game



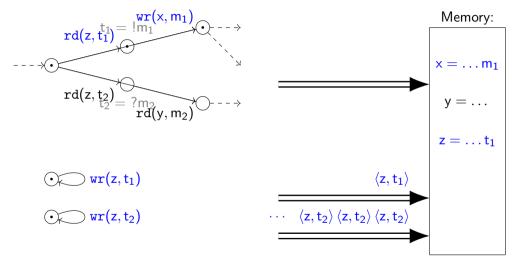
#### Theorem

The reachability problem under TSO semantics with update fairness is undecidable.




### **Process Fairness**

Every enabled process must be executed infinitely often.

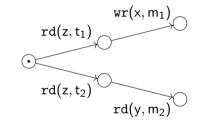

reachability games? reachability games?  $\rightarrow$  safety games!

Idea: update player simulates PCS run, process player is passive












### **Process Fairness**

Every enabled process must be executed infinitely often.

- similar to reachability games
- update player simulates PCS run, process player is passive
- reduce PCS reachability (undecidable) to TSO safety game



### Theorem

The safety problem under TSO semantics with process fairness is undecidable.



### Conclusion

- reachability and safety without fairness
  - reduce to single-process programs
  - ► finite behaviour / PSPACE-complete
- reachability with update fairness and safety with process fairness
  - reduction from PCS reachability
  - undecidable
- further work could consider other
  - winning conditions
  - fairness conditions
  - weak memory models





### Reachability and Safety Games under TSO Semantics

SCooL / GandALF 2024 in Reykjavik

Stephan Spengler

Uppsala University, Sweden

20 June 2024