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Similarity between Compound Data
Placeholder

Name Age Hobbies

Alice 25 reading, hiking, cooking
Alicia 27 reading, dancing, cooking

• Jaccard similarity for hobbies (sets):
H1 = {“reading”, “hiking”, “cooking”}
H2 = {“reading”, “dancing”, “cooking”}

|H1 ∩ H2|
|H1 ∪ H2|

=
2
4
= 0.5

• Jaro-Winkler similarity for names:
simjw(“Alice”, “Alicia”) = 0.893

• Numeric similarity for ages:
1 − |25 − 27|

max(25, 27)
= 1 − 2

27
≈ 0.926

• Composite similarity:
0.893 + 0.926 + 0.5

3
= 0.773
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Gene Sample ID Expression Level (FPKM) P-Value Log Fold Change

BRCA1 Sample001 35.4 0.002 2.3
TP53 Sample001 50.2 0.005 -1.8
HER2 Sample002 25.1 0.001 3.1
EGFR Sample002 45.6 0.003 -2.0
Retention Time (min) Peak Area Compound Concentration (mg/L)
5.2 1500 Compound A 12.5
10.6 2500 Compound B 25.0
15.3 3000 Compound C 30.5
Chemical Shift (δ ppm) Multiplicity Coupling Constant (Hz)
1.25 Singlet -
3.45 Doublet 7.2
7.60 Triplet 15.3
Cell Population Marker Fluorescence Intensity (MFI)
CD4+ T cells CD25 150
CD8+ T cells CD69 200
B cells CD19 100



Abstract Similarity between Complex Worlds
A generalization from similarity degrees to aspects

S: a set of skills/aspects
S1 s(x, y) ⊆ S (abstract measure)
S2a s(x, y) = S =⇒ x = y (congruence implies equality)
S3 s(x, y) = s(y, x) (symmetry)
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From similarity to knowledge
Placeholder

similarity
between possible worlds

⇓
indistinguishability
of possible worlds

⇓
uncertainty

⇓
knowledge:

propositions free from uncertainty

s similar? t
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Models
We have chosen a general way of representing similarity

P: atoms
A: agents
S: epistemic skills
A model is a quadruple (W,E, C,V):

• W: worlds / states / nodes
• E : W × W → ℘(S): edge function
• C : A → ℘(S): capability function
• V : W → ℘(P): valuation
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Illustration of a Model
Placeholder

s5
p1,p3,p4

1,2,3,4

s2
p1,p3

1,2,3,4

1

2,3

1,2,3

s3
p1,p2,p4

1,2,3,4

4

1,4

s1
p1,p2

1,2,3,4

1,4

1,2,3

1

s4
p3,p4

1,2,3,4

2,3,4

C(a) = {1, 2, 3}
C(b) = {2, 3, 4}
C(c) = {4}
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Basic Language and Formal Semantics
Placeholder

Epistemic language: ϕ ::= p | ¬ϕ | (ϕ→ ϕ) | Kaϕ

Satisfaction: M, s |= p ⇐⇒ p ∈ ν(s)
M, s |= ¬ψ ⇐⇒ not M, s |= ψ
M, s |= ψ → χ ⇐⇒ if M, s |= ψ then M, s |= χ
M, s |= Kaϕ ⇐⇒ for all t ∈ W, if C(a) ⊆ E(s, t) then M, t |= ϕ

• C(a): agent a’s skill set
• E(s, t): skills with which one cannot discern between s and t

• C(a) ⊆ E(s, t): a cannot discern between s and t
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Model Checking
Placeholder s5

p1,p3,p4

1,2,3,4

s2
p1,p3

1,2,3,4

1

2,3

1,2,3

s3
p1,p2,p4

1,2,3,4

4

1,4

s1
p1,p2

1,2,3,4

1,4

1,2,3

1

s4
p3,p4

1,2,3,4

2,3,4

C(a) = {1, 2, 3}
C(b) = {2, 3, 4}
C(c) = {4}

• s2 |= Kap3

• s4 |= ¬Kbp1 ∧ ¬Kb¬p1

• s3 |= Kc(Kap3 ∨ Ka¬p3)

9 / 41



Translation to Classical Kripke Model
Placeholder

s5
p1,p3,p4

1,2,3,4

s2
p1,p3

1,2,3,4

1

2,3

1,2,3

s3
p1,p2,p4

1,2,3,4

4

1,4

s1
p1,p2

1,2,3,4

1,4

1,2,3

1

s4
p3,p4

1,2,3,4

2,3,4

C(a) = {1, 2, 3}
C(b) = {2, 3, 4}
C(c) = {4}

s5
p1,p3,p4

abc

s2
p1,p3

abc

bc

c

bc

s3
p1,p2,p4

abc

a

abc

s1
p1,p2

abc

abc

bc

bc

s4
p3,p4

abc

ac
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Some Results
Placeholder

• Complexity of model checking: in P
• Satisfiability/validity problem: PSPACE complete
• Axiomatization: KB

Liang X. & Wáng, Y.N. Epistemic Logics over Weighted Graphs. LNGAI 2022.
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Similarity Metrics (CMZ2009) *
We can also go for more concrete similarity measures

S1’ s(x, x) ≥ 0 (nonnegative self-similarity)
S2a’ s(x, y) = 1 =⇒ x = y (congruence implies equality)
S2b s(x, x) ≥ s(x, y) (high self-similarity)
S3 s(x, y) = s(y, x) (symmetry)
S4 s(x, z) ≥ s(x, y) + s(y, z)− s(y, y) (sharp triangularity)

Liang X. & Wáng, Y.N. Epistemic Logics via Distance and Similarity. PRICAI 2022.
Liang X. & Wáng, Y.N. Similarity Metrics from the Perspective of Epistemic Logic. manuscript.
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Incorporating Group
Knowledge

CK, DK, EK and FK



Notions of Group Knowledge
Placeholder

• Individual knowledge: Kaϕ

• Mutual/Everyone’s knowledge: EGϕ :=
∧

x∈G Kxϕ

• Common knowledge: CGϕ, make sure that |= CGϕ↔ EG(ϕ ∧ CGϕ)

• Distributed knowledge: DGϕ, to be reinterpreted
• Field knowledge: FGϕ, new

Liang X. & Wáng, Y.N. Field Knowledge as a Dual to Distributed Knowledge: A Characterization by
Weighted Modal Logic. LNGAI 2024.
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Semantics
Model M = (W, E, C,V)

M, s |= Kaψ ⇐⇒ for all t ∈ W, if C(a) ⊆ E(s, t) then M, t |= ψ
M, s |= EGψ ⇐⇒ for all a ∈ G, M, s |= Kaψ
M, s |= CGψ ⇐⇒ for all n ∈ N+, M, s |= En

Gψ

M, s |= DGψ ⇐⇒ for all t ∈ W, if⋃a∈G C(a) ⊆ E(s, t) then M, t |= ψ
M, s |= FGψ ⇐⇒ for all t ∈ W, if⋂a∈G C(a) ⊆ E(s, t) then M, t |= ψ

• Distributed knowledge: the group’s knowledge by combing the individual skills
• Field knowledge: the group’s knowledge by their common skills

15 / 41



Semantics
Model M = (W, E, C,V)

M, s |= Kaψ ⇐⇒ for all t ∈ W, if C(a) ⊆ E(s, t) then M, t |= ψ
M, s |= EGψ ⇐⇒ for all a ∈ G, M, s |= Kaψ
M, s |= CGψ ⇐⇒ for all n ∈ N+, M, s |= En

Gψ

M, s |= DGψ ⇐⇒ for all t ∈ W, if⋃a∈G C(a) ⊆ E(s, t) then M, t |= ψ
M, s |= FGψ ⇐⇒ for all t ∈ W, if⋂a∈G C(a) ⊆ E(s, t) then M, t |= ψ

• Distributed knowledge: the group’s knowledge by combing the individual skills
• Field knowledge: the group’s knowledge by their common skills

Compare:
• M, s |= EGψ ⇐⇒ for all t ∈ W, if (s, t) ∈

⋃
a∈G Ra, then M, t |= ψ

• M, s |= DGψ ⇐⇒ for all t ∈ W, if (s, t) ∈
⋂

a∈G Ra, then M, t |= ψ
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Expressivity *
Placeholder

ELCDF

yy ��
ELCD

99

��

ELCF

OO

yy

ELDF

ee

yy ��
ELC

OO 99

ELD

ee 99

��

ELF

ee OO

yy
EL

ee OO 99

(a) when |Ag| = 1

ELCDF

ELCD

99

ELCF

OO

ELDF

ee

ELC

OO 99

ELD

ee 99

ELF

ee OO

EL

ee OO 99

(b) when |Ag| ≥ 2
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Axiomatization *
Placeholder

• Base system: KB

• System F
— (KF) FG(ϕ→ ψ) → (FGϕ→ FGψ)— (F1) F{a}ϕ↔ Kaϕ— (F2) FGϕ→ FHϕ with H ⊆ G— (BF) ϕ→ FG¬FG¬ϕ— (NF) from ϕ infer FGϕ

• System C
— (C1) CGϕ→

∧
a∈G Ka(ϕ ∧ CGϕ)— (C2) from ϕ→
∧

a∈G Ka(ϕ ∧ ψ)infer ϕ→ CGψ

• System D
— (KD) DG(ϕ→ ψ) → (DGϕ→ DGψ)— (D1) D{a}ϕ↔ Kaϕ— (D2) DGϕ→ DHϕ with G ⊆ H— (BD) ϕ→ DG¬DG¬ϕ

17 / 41



Completeness proofs *
Placeholder

• By translation of satisfiability
— KB

• Canonical model method
— KB

• Path-based canonical models (unraveling/folding)
— KB ⊕ D, KB ⊕ F, KB ⊕ D ⊕ F

• Finitary path-based canonical models
— KB ⊕ C, KB ⊕ C ⊕ D, KB ⊕ C ⊕ F, KB ⊕ C ⊕ D ⊕ F
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Model Checking: Still in P
Placeholder

s5
p1,p3,p4

1,2,3,4

s2
p1,p3

1,2,3,4

1

2,3

1,2,3

s3
p1,p2,p4

1,2,3,4

4

1,4

s1
p1,p2

1,2,3,4

1,4

1,2,3

1

s4
p3,p4

1,2,3,4

2,3,4

C(a) = {1, 2, 3}
C(b) = {2, 3, 4}
C(c) = {4}

• s2 |= Kap3

• s4 |= ¬F{a,b}¬p1

• s5 |= ¬C{a,c}p1
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Computational complexity of SAT
Logics with CK: EXPTIME complete

ELCDFs

PTIME

��

ELCDF

��

ELCDs

55

ELCFs

OO

ELCF

OO

ELCD

ii

KC
n (n ≥ 1)

S5C
n (n ≥ 2)

EXPTIME complete
PTIME // ELCs

PP OO

PTIME // ELC

OO NN >>

KC
1EXPTIME completelinearoo
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Computational complexity of SAT
Logics without CK: PSPACE complete

ELDFs PTIME // ELDF

PTIME

**ELDs

55

ELFs

OO

ELF

OO

ELD

ii

// KD
n (n ≥ 1)

PSPACE completeoo

KB1

PSPACE complete // ELs

OO OO

EL //

OO OO

Kn (n ≥ 1)

PSPACE completeoo
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Dynamics

Knowing and forgetting



Upskilling, Downskilling and Reskilling
Placeholder

ϕ ::= p | ¬ϕ | (ϕ→ ϕ) | Kaϕ | CGϕ | DGϕ | EGϕ | FGϕ |
(+S)aϕ | (−S)aϕ | (=S)aϕ | (≡b)aϕ | ⊞aϕ | ⊟aϕ | □aϕ

M,w |= (+S)aψ ⇔ W,E, Ca+S, β,w |= ψ Ca+S(a)=C(a)∪S and ∀x ∈ A\{a}. Ca+S(x)=C(x)

M,w |= (−S)aψ ⇔ W,E, Ca−S, β,w |= ψ Ca−S(a)=C(a)\S and ∀x ∈ A\{a}. Ca−S(x)=C(x)

M,w |= (=S)aψ ⇔ W,E, Ca=S, β,w |= ψ Ca=S(a)=S and ∀x ∈ A\{a}. Ca=S(x)=C(x)

M,w |= (≡b)aψ⇔ W,E, Ca≡b, β,w |= ψ Ca≡b(a)=C(b) and ∀x ∈ A\{a}. Ca≡b(x)=C(x)

M,w |= ⊞aψ ⇔ for all finite nonempty S ⊆ S, M,w |= (+S)aψ

M,w |= ⊟aψ ⇔ for all finite nonempty S ⊆ S, M,w |= (−S)aψ

M,w |= □aψ ⇔ for all finite nonempty S ⊆ S, M,w |= (=S)aψ

Liang X. & Wáng, Y.N. Epistemic Skills: Logical Dynamics of Knowing and Forgetting. GandALF 2024.
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Slogans
Forgetting: decrease in skills, and increase in uncertainty

Necessary: true in all accessible worlds.
Known: true in all uncertain situations.

APAL:“Knowable as known after an announcement.”

Slogan 1. Knowable as known after upskilling.
Slogan 2. Forgettable as unknown after downskilling.

Debate: having no access is not forgetting.
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Epistemic De Re & De Dicto
Von Wright (1951) An Essay in Modal Logic

• The epistemic modalities are said to be de dicto when they are about the mode or
way in which a proposition is or is not known (to be true). The epistemic
modalities are used de dicto in phrases such as “it is known that ...”, “it is unknown
whether ...”, or “it is known that not ...”.

• The epistemic modalities are said to be de re when they are about the mode or
way in which an individual thing is known to possess or to lack a certain property.
The modalities are used de re in phrases such as “Jones is (not) known (not) to be
dead”, etc.
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Epistemic De Re & De Dicto
Quine (1956) Quantifiers and Propositional Attitudes

• “Ralph believes that someone is a spy.”
— Ralph believes that there is a spy.

Ralph believes: ∃x(x is a spy).
— Someone is such that Ralph believes that s/he is a spy.

∃x (Ralph believes that x is a spy).
• Ambiguity comes from the scope of the quantifier
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Knowing De Dicto in our case
Placeholder

• “Agent a knows (with her current skills) that there exists a set S of skills such that,
with S, she can achieve ϕ in world w of model (W,E, C, β).”

• (∀u ∈ W)[C(a) ⊆ E(w, u) ⇒ (∃S ⊆ S) (W,E, Ca+S, β), u |= ϕ]

• Expressed by Ka ⊠aϕ
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Knowing De Re in our case
Placeholder

• (Explicitly knowing de re) There exists a set S of skills such that agent a knows with
her current skill set, that with S in addition, she can achieve ϕ in world w of model
(W,E, C, β).
(∃S ⊆ S)(∀u ∈ W)[C(a) ⊆ E(w, u) ⇒ (W,E, Ca+S, β), u |= ϕ]
Expressed by (≡a)c ⊠cKa(≡c)aϕ (where c is not in ϕ)

• (Implicitly knowing de re) There exists a set S of skills such that agent a knows,
with the addition of S to her skill set, that she can achieve ϕ in world w of model
(W,E, C, β).
(∃S ⊆ S)(∀u ∈ W)[Ca+S(a) ⊆ E(w, u) ⇒ (W,E, Ca+S, β), u |= ϕ]
Expressed by ⊠aKaϕ
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Computational Complexity
The Model Checking Problem

• Logics without quantifiers: in P
• Logics with quantifiers: PSPACE complete

— Hardness: reducing the Undirected Edge Geography (UEG) problem
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Upper Bound
We only need to consider one new skill in addition to those that already appear
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Example: UEG Game on (G, d1)Placeholder

G =
({

d1, d2, d3, d4
}
,
{
(d1, d3), (d1, d4), (d2, d4), (d3, d4)

})
d1 d2

d3 d4
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Model MG = (W,E, C, β)
W = {d1, . . . , d4}

d1
p1

sd1d4

d2
p2

sd2d4

d3
p3

sd1d3

sd3d4

d4
p4

C(a1) = ∅
C(a2) = ∅
C(a3) = ∅
C(a4) = ∅

• E(dm, dk) = {sdmdk} whenever dm dk• C(a1) = C(a2) = C(a3) = C(a4) = ∅ (ai is the player who performs the i’s move)
• V(dj) = {pj} for 1 ≤ j ≤ 4
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Formula ϕGFor i’s move in the UEG game:

ψi := ¬Kai⊥ ∧
(

Kai p1 ∨ Kai p2 ∨ Kai p3 ∨ Kai p4
)

χ1 := ⊥
χ2 := (K̂a1 p1 ∧ Ka2 p1) ∨ (K̂a1 p2 ∧ Ka2 p2) ∨ (K̂a1 p3 ∧ Ka2 p3) ∨ (K̂a1 p4 ∧ Ka2 p4)

χ3 := (K̂a1 p1 ∧ Ka2 p1) ∨ (K̂a1 p2 ∧ Ka2 p2) ∨ (K̂a1 p3 ∧ Ka2 p3) ∨ (K̂a1 p4 ∧ Ka2 p4)

∨(K̂a1 p1 ∧ Ka3 p1) ∨ (K̂a1 p2 ∧ Ka3 p2) ∨ (K̂a1 p3 ∧ Ka3 p3) ∨ (K̂a1 p4 ∧ Ka3 p4)

∨(K̂a2 p1 ∧ Ka3 p1) ∨ (K̂a2 p2 ∧ Ka3 p2) ∨ (K̂a2 p3 ∧ Ka3 p3) ∨ (K̂a2 p4 ∧ Ka3 p4)

χi :=
∨

1≤j<i

(
(K̂aj p1 ∧ Kai p1) ∨ (K̂aj p2 ∧ Kai p2) ∨ (K̂aj p3 ∧ Kai p3) ∨ (K̂aj p4 ∧ Kai p4)

)
ϕG := ⊠a1

(ψ1 ∧ ¬χ1 ∧ Ka1 ⊞a2 (¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3
(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))))
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The following are equivalent
Placeholder

• Player 1 has a winning strategy in (G, d1)

• MG, d1 |= ϕG
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Player 1’s Move for Step 1
Placeholder

G =
({

d1, d2, d3, d4
}
,
{
(d1, d3), (d1, d4), (d2, d4), (d3, d4)

})
d1 d2

d3 d4

• Player 1 chooses blue: will win
• Player 1 chooses red: can loose
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First Step in the Model Checking
Placeholder

MG, d1 |= ϕG, where ϕG is:

⊠a1

(
ψ1 ∧¬χ1 ∧Ka1 ⊞a2

(
¬ψ2 ∨χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧¬χ3 ∧Ka3 ⊞a4 (¬ψ4 ∨χ4))
))

After some upskilling for a1, true in d1 are:
• ψ1 = ¬Ka1⊥ ∧ (Ka1 p1 ∨ Ka1 p2 ∨ Ka1 p3 ∨ Ka1 p4)

• ¬χ1 = ¬⊥
• Ka1 ⊞a2 (¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4)))
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Step 1: Model Checking
Placeholder

d1
p1

sd1d4

d2
p2

sd2d4

d3
p3

sd1d3

sd3d4

d4
p4

C(a1) = ∅
C(a2) = ∅
C(a3) = ∅
C(a4) = ∅

MG, d1 |= (+{sd1d3})a1

(
ψ1 ∧ ¬χ1 ∧ Ka1 ⊞a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
))

MG, d1 ̸|= (+{sd1d4})a1

(
ψ1 ∧ ¬χ1 ∧ Ka1 ⊞a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
))
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Step 2: Blue Case
Placeholder

d1
p1

sd1d4

d2
p2

sd2d4

d3
p3

sd1d3

sd3d4

d4
p4

C(a1) = {sd1d3}
C(a2) = ∅
C(a3) = ∅
C(a4) = ∅

MG, d3 |= ⊞a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
)

• MG, d3 |= (+{sd1d3})a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
)

• MG, d3 |= (+{sd3d4})a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
)

• MG, d3 |= (+{sd1d4})a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
) (or any other

combinations)
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Step 2: Red Case
Placeholder

d1
p1

sd1d4

d2
p2

sd2d4

d3
p3

sd1d3

sd3d4

d4
p4

C(a1) = {sd1d4}
C(a2) = ∅
C(a3) = ∅
C(a4) = ∅

MG, d4 ̸|= ⊞a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
)

• MG, d4 ̸|= (+{sd2d4})a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
)
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Future Work
Placeholder

• Computational complexity of the satisfiability/validity problems
• Logics over different characterizations of similarity
• Axiomatization
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Thank you!


